K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2016

Ta luôn chứng minh được: Nếu \(\frac{a}{b}>1\Leftrightarrow\frac{a}{b}>\frac{a+1}{b+1}\)và \(\frac{a}{b}< \frac{a-1}{b-1}\)

Áp dụng điều trên ta có:

\(S=\frac{2}{1}.\frac{4}{3}.\frac{6}{5}...\frac{200}{199}\)

=> \(S>\frac{3}{2}.\frac{5}{4}.\frac{7}{6}...\frac{201}{200}\)

=> \(S^2>\frac{2}{1}.\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.\frac{6}{5}.\frac{7}{6}...\frac{200}{199}.\frac{201}{200}\)

=> S2 > 201 > 200 (1)

\(S=\frac{2}{1}.\frac{4}{3}.\frac{6}{5}...\frac{200}{199}\)

=> \(S< \frac{2}{1}.\frac{3}{2}.\frac{5}{4}...\frac{199}{198}\)

=> \(S^2< \frac{2}{1}.\frac{2}{1}.\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.\frac{6}{5}...\frac{199}{198}.\frac{200}{199}\)

=> \(S^2< 400\)(2)

Từ (1) và (2) => 200 < S2 < 400 (đpcm)

10 tháng 3 2017

anh học trường cấp hai nào thế?

8 tháng 2 2020

Ta có : A = \(\frac{1}{100^2}+\frac{1}{101^2}+...+\frac{1}{199^2}=\frac{1}{100.100}+\frac{1}{101.101}+...+\frac{1}{199.199}\)

\(\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{199.200}=\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{199}-\frac{1}{200}\)

\(\frac{1}{100}-\frac{1}{200}=\frac{1}{200}\Rightarrow A>\frac{1}{200}\left(1\right)\)

Lại có : A = \(\frac{1}{100^2}+\frac{1}{101^2}+...+\frac{1}{199^2}=\frac{1}{100.100}+\frac{1}{101.101}+...+\frac{1}{199.199}\)

\(< \frac{1}{99.100}+\frac{1}{100.101}+...+\frac{1}{198.199}=\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+...+\frac{1}{198}-\frac{1}{199}\)

\(=\frac{1}{99}-\frac{1}{199}\Rightarrow A< \frac{1}{99}\left(2\right)\)

Từ (1) và (2) => \(\frac{1}{200}< A< \frac{1}{99}\left(\text{ĐPCM}\right)\)

Cho A=\(\frac{1}{100^2}+\frac{1}{101^2}+......................+\frac{1}{198^2}+\frac{1}{199^2}\)

CMR:\(\frac{1}{200}< A< \frac{1}{99}\)

+)Ta có:A=\(\frac{1}{100^2}+\frac{1}{101^2}+......................+\frac{1}{198^2}+\frac{1}{199^2}\)

=>A=\(\frac{1}{100.100}+\frac{1}{101.101}+...........+\frac{1}{198.198}+\frac{1}{199.199}\)

+)Ta thấy :\(\frac{1}{100.100}\)>\(\frac{1}{100.101}\)

                   \(\frac{1}{101.101}>\frac{1}{101.102}\)

                 ............................................. 

                 \(\frac{1}{198.198}>\frac{1}{198.199}\)

                 \(\frac{1}{199.199}>\frac{1}{199.200}\)

=> \(\frac{1}{100.100}+\frac{1}{101.101}+...........+\frac{1}{198.198}+\frac{1}{199.199}\)>\(\frac{1}{100.101}+\frac{1}{101.102}+................+\frac{1}{198.199}+\frac{1}{199.200}\)

=>A>\(\frac{1}{100.101}+\frac{1}{101.102}+................+\frac{1}{198.199}+\frac{1}{199.200}\)

=>A>\(\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+........+\frac{1}{198}-\frac{1}{199}+\frac{1}{199}-\frac{1}{200}\)

=>A>\(\frac{1}{100}-\frac{1}{200}=\frac{2}{200}-\frac{1}{200}=\frac{1}{200}\)

=>A>\(\frac{1}{200}\)(1)

+)Ta lại có:

A=\(\frac{1}{100^2}+\frac{1}{101^2}+......................+\frac{1}{198^2}+\frac{1}{199^2}\)

=>A=\(\frac{1}{100.100}+\frac{1}{101.101}+...........+\frac{1}{198.198}+\frac{1}{199.199}\)

+)Ta lại thấy:\(\frac{1}{100.100}< \frac{1}{99.100}\)

                        \(\frac{1}{101.101}< \frac{1}{100.101}\)

                      ................................................

                           \(\frac{1}{198.198}< \frac{1}{197.198}\)

                           \(\frac{1}{199.199}< \frac{1}{198.199}\)

 =>\(\frac{1}{100.100}+\frac{1}{101.101}+...........+\frac{1}{198.198}+\frac{1}{199.199}\)<\(\frac{1}{99.100}+\frac{1}{100.101}+.............+\frac{1}{197.198}+\frac{1}{198.199}\)

=>A<\(\frac{1}{99.100}+\frac{1}{100.101}+.............+\frac{1}{197.198}+\frac{1}{198.199}\)

=>A<\(\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+...........+\frac{1}{197}-\frac{1}{198}+\frac{1}{198}-\frac{1}{199}\)

=>A<\(\frac{1}{99}-\frac{1}{199}\)

Mà A<\(\frac{1}{99}-\frac{1}{199}\)

=>A<\(\frac{1}{99}\)(2)

+)Từ (1) và (2) 

=>\(\frac{1}{200}< A< \frac{1}{99}\)(ĐPCM)

Vậy \(\frac{1}{200}< A< \frac{1}{99}\)

Chúc bn học tốt

14 tháng 7 2016

A = 1/2! + 2/3! + 3/4! + ... + 2015/2016!

A = 2/2! - 1/2! + 3/3! - 1/3! + 4/4! - 1/4! + ... + 2016/2016! - 1/2016!

A = 1 - 1/2! + 1/2! - 1/3! + 1/3! - 1/4! + ... + 1/2015! - 1/2016!

A = 1 - 1/2016! < 1 (đpcm)

M = 1/52 + 1/6+ 1/7+ ... + 1/1002

M > 1/5.6 + 1/6.7 + 1/7.8 + ... + 1/100.101

M > 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 + ... + 1/100 - 1/101

M > 1/5 - 1/101 > 1/5 - 1/30 = 1/6 = B

=> M > B (đpcm)

C = 1/20 + 1/21 + 1/22 + ... + 1/200

C > 1/200 + 1/200 + 1/200 + 1/200

       (181 phân số 1/200)

C > 1/200 . 181 = 181/200 > 180/200 = 9/10 (đpcm)

2 tháng 6 2015

a)ta có 3B=1+1/3+1/3^2+........+1/3^2003+1/3^2004

             B=    1/3+1/3^2+........+1/3^2003+1/3^2004+1/3^2005

suy ra 2B=1-1/3^2005

    suy ra B=\(\frac{1-\frac{1}{3}^{2005}}{2}\)

suy ra B=1/2-1/3^2005/2 bé hơn 1/2

từ đấy suy ra B bé hơn 1/2

15 tháng 6 2018

\(2)\) Ta có : 

\(n^{200}< 3^{400}\)

\(\Leftrightarrow\)\(n^{200}< 3^{2.200}\)

\(\Leftrightarrow\)\(n^{200}< \left(3^2\right)^{200}\)

\(\Leftrightarrow\)\(n^{200}< 9^{200}\)

\(n\) lớn nhất nên \(n=8\)

Vậy \(n=8\)

Chúc bạn học tốt ~ 

15 tháng 6 2018

1) (2x-5)2008+(3y+4)2010<=0

=>2x-5=0 và 3y+4=0

=>x=5/2 và y=-4/3

2)n200<3400

=>n200<9200

=>n<9

Vậy số nguyên n lớn nhất là 8