Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(C=\dfrac{1}{2}.\dfrac{3}{4}.....\dfrac{199}{200}\)
\(\Rightarrow C< \dfrac{2}{3}.\dfrac{4}{5}.....\dfrac{200}{201}\)
\(\Rightarrow C^2< \dfrac{2}{3}.\dfrac{4}{5}.....\dfrac{200}{201}.\dfrac{1}{2}.\dfrac{3}{4}.....\dfrac{199}{200}\)
\(\Rightarrow C^2< \dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}.....\dfrac{199}{200}.\dfrac{200}{201}\)
\(\Rightarrow C^2< \dfrac{1}{201}\) (đpcm)
Ta có : A = \(\frac{1}{100^2}+\frac{1}{101^2}+...+\frac{1}{199^2}=\frac{1}{100.100}+\frac{1}{101.101}+...+\frac{1}{199.199}\)
> \(\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{199.200}=\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{199}-\frac{1}{200}\)
= \(\frac{1}{100}-\frac{1}{200}=\frac{1}{200}\Rightarrow A>\frac{1}{200}\left(1\right)\)
Lại có : A = \(\frac{1}{100^2}+\frac{1}{101^2}+...+\frac{1}{199^2}=\frac{1}{100.100}+\frac{1}{101.101}+...+\frac{1}{199.199}\)
\(< \frac{1}{99.100}+\frac{1}{100.101}+...+\frac{1}{198.199}=\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+...+\frac{1}{198}-\frac{1}{199}\)
\(=\frac{1}{99}-\frac{1}{199}\Rightarrow A< \frac{1}{99}\left(2\right)\)
Từ (1) và (2) => \(\frac{1}{200}< A< \frac{1}{99}\left(\text{ĐPCM}\right)\)
Cho A=\(\frac{1}{100^2}+\frac{1}{101^2}+......................+\frac{1}{198^2}+\frac{1}{199^2}\)
CMR:\(\frac{1}{200}< A< \frac{1}{99}\)
+)Ta có:A=\(\frac{1}{100^2}+\frac{1}{101^2}+......................+\frac{1}{198^2}+\frac{1}{199^2}\)
=>A=\(\frac{1}{100.100}+\frac{1}{101.101}+...........+\frac{1}{198.198}+\frac{1}{199.199}\)
+)Ta thấy :\(\frac{1}{100.100}\)>\(\frac{1}{100.101}\)
\(\frac{1}{101.101}>\frac{1}{101.102}\)
.............................................
\(\frac{1}{198.198}>\frac{1}{198.199}\)
\(\frac{1}{199.199}>\frac{1}{199.200}\)
=> \(\frac{1}{100.100}+\frac{1}{101.101}+...........+\frac{1}{198.198}+\frac{1}{199.199}\)>\(\frac{1}{100.101}+\frac{1}{101.102}+................+\frac{1}{198.199}+\frac{1}{199.200}\)
=>A>\(\frac{1}{100.101}+\frac{1}{101.102}+................+\frac{1}{198.199}+\frac{1}{199.200}\)
=>A>\(\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+........+\frac{1}{198}-\frac{1}{199}+\frac{1}{199}-\frac{1}{200}\)
=>A>\(\frac{1}{100}-\frac{1}{200}=\frac{2}{200}-\frac{1}{200}=\frac{1}{200}\)
=>A>\(\frac{1}{200}\)(1)
+)Ta lại có:
A=\(\frac{1}{100^2}+\frac{1}{101^2}+......................+\frac{1}{198^2}+\frac{1}{199^2}\)
=>A=\(\frac{1}{100.100}+\frac{1}{101.101}+...........+\frac{1}{198.198}+\frac{1}{199.199}\)
+)Ta lại thấy:\(\frac{1}{100.100}< \frac{1}{99.100}\)
\(\frac{1}{101.101}< \frac{1}{100.101}\)
................................................
\(\frac{1}{198.198}< \frac{1}{197.198}\)
\(\frac{1}{199.199}< \frac{1}{198.199}\)
=>\(\frac{1}{100.100}+\frac{1}{101.101}+...........+\frac{1}{198.198}+\frac{1}{199.199}\)<\(\frac{1}{99.100}+\frac{1}{100.101}+.............+\frac{1}{197.198}+\frac{1}{198.199}\)
=>A<\(\frac{1}{99.100}+\frac{1}{100.101}+.............+\frac{1}{197.198}+\frac{1}{198.199}\)
=>A<\(\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+...........+\frac{1}{197}-\frac{1}{198}+\frac{1}{198}-\frac{1}{199}\)
=>A<\(\frac{1}{99}-\frac{1}{199}\)
Mà A<\(\frac{1}{99}-\frac{1}{199}\)
=>A<\(\frac{1}{99}\)(2)
+)Từ (1) và (2)
=>\(\frac{1}{200}< A< \frac{1}{99}\)(ĐPCM)
Vậy \(\frac{1}{200}< A< \frac{1}{99}\)
Chúc bn học tốt
Ta có :
1002 > 99 . 100
1012 > 100 . 101
..............
2002 > 199. 200
=> A < \(\frac{1}{99.100}+\frac{1}{100.101}+...+\frac{1}{199.200}=\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}+...+\frac{1}{199}-\frac{1}{200}\)
=> A < \(\frac{1}{99}-\frac{1}{200}< \frac{1}{99}\) \(\left(1\right)\)
Tương tự ta có :
A > \(\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{200.201}\)
=> A > \(\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{200}-\frac{1}{201}\)
=> A > \(\frac{1}{100}-\frac{1}{201}>\frac{1}{100}-\frac{1}{200}\)
=> A > \(\frac{1}{200}\) \(\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\)Ta có :
\(\frac{1}{200}< A< \frac{1}{99}\)
=> ĐPCM
Ta luôn chứng minh được: Nếu \(\frac{a}{b}>1\Leftrightarrow\frac{a}{b}>\frac{a+1}{b+1}\)và \(\frac{a}{b}< \frac{a-1}{b-1}\)
Áp dụng điều trên ta có:
\(S=\frac{2}{1}.\frac{4}{3}.\frac{6}{5}...\frac{200}{199}\)
=> \(S>\frac{3}{2}.\frac{5}{4}.\frac{7}{6}...\frac{201}{200}\)
=> \(S^2>\frac{2}{1}.\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.\frac{6}{5}.\frac{7}{6}...\frac{200}{199}.\frac{201}{200}\)
=> S2 > 201 > 200 (1)
\(S=\frac{2}{1}.\frac{4}{3}.\frac{6}{5}...\frac{200}{199}\)
=> \(S< \frac{2}{1}.\frac{3}{2}.\frac{5}{4}...\frac{199}{198}\)
=> \(S^2< \frac{2}{1}.\frac{2}{1}.\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.\frac{6}{5}...\frac{199}{198}.\frac{200}{199}\)
=> \(S^2< 400\)(2)
Từ (1) và (2) => 200 < S2 < 400 (đpcm)
anh học trường cấp hai nào thế?