Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}a^2=x^2y^2+\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\\b^2=y^2\left(1+x^2\right)+x^2\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\end{cases}}\)
\(\Rightarrow a^2-b^2=1\)
\(\Rightarrow a^2=1+b^2\)
Ta có a2 = 2x2 y2 + x2 + y2 + 1 + \(2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
b2 = 2x2 y2 + x2 + y2 + \(2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
Từ đó => a2 = b2 + 1
=> b = \(\sqrt{a^2-1}\)
Ta có:
\(\hept{\begin{cases}a^2=x^2y^2+\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\\b^2=x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\end{cases}}\)
\(\Rightarrow b^2-a^2=-1\)
\(\Leftrightarrow b^2=a^2-1\)
\(b^2=x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
\(=x^2+y^2+2x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
Mà \(a^2=x^2+y^2+2x^2y^2+1+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
\(\Leftrightarrow\)\(2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=a^2-\left(x^2+y^2+2x^2y^2\right)-1\)
\(\Rightarrow\)\(b^2=x^2+y^2+2x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
\(=x^2+y^2+2x^2y^2+a^2-\left(x^2+y^2+2x^2y^2\right)-1=a^2-1\)\(\Leftrightarrow\)\(b=\sqrt{a^2-1}\) ( do a2>1 )
Cm: \(a^2>1\)
Có: \(1< \left(1+x^2\right)\left(1+y^2\right)\)\(\Leftrightarrow\)\(1< xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)\(\Leftrightarrow\)\(a^2>1\)
\(\(b)\frac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\left(a,b\ge0;a,b\ne1\right)\)\)
\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\left(a\sqrt{b}-b\sqrt{a}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab+1}\right)}\)\)
\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)
\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)
\(\(=\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{ab}-1\right)}\left(a,b\ge0.a,b\ne1\right)\)\)
_Minh ngụy_
\(\(c)\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)\)( tự ghi điều kiện )
\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(\sqrt{x}-\sqrt{y}\right)^2.\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)
\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(x\sqrt{x}+x\sqrt{y}-2x\sqrt{y}-2y\sqrt{x}+y\sqrt{x}+y\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)
\(\(=\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)\)( phá ngoặc và tính )
\(\(=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\sqrt{xy}\)\)
_Minh ngụy_
\(b^2=x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
\(=x^2+y^2+2x^2y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
\(=x^2+y^2+x^2y^2+1+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}+x^2y^2-1\)
\(=\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}+x^2y^2-1\)
\(=\left(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right)^2-1\)
\(=a^2-1\Rightarrow b=\sqrt{a^2-1}\)
Ta có:
\(a^2=x^2y^2+\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
\(\Rightarrow a^2=x^2+y^2+x^2y^2+1\)
\(b^2=x^2\left(1+y^2\right)+y^2\left(1+x^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\)
\(\Rightarrow b^2=x^2+y^2+x^2y^2\)
\(\Rightarrow b^2=a^2-1\)
Nếu \(x,y>0\Rightarrow b>0\Rightarrow b=\sqrt{a^2-1}\)
Nếu \(x,y< 0\Rightarrow b< 0\Rightarrow b=-\sqrt{a^2-1}\)