\(\frac{x+\sqrt{xy}}{y+\sqrt{xy}}\)

b, 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\(b)\frac{\sqrt{a}+a\sqrt{b}-\sqrt{b}-b\sqrt{a}}{ab-1}\left(a,b\ge0;a,b\ne1\right)\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\left(a\sqrt{b}-b\sqrt{a}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab+1}\right)}\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)+\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)

\(\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{ab}+1\right)}{\left(\sqrt{ab}-1\right)\left(\sqrt{ab}+1\right)}\)\)

\(\(=\frac{\sqrt{a}-\sqrt{b}}{\left(\sqrt{ab}-1\right)}\left(a,b\ge0.a,b\ne1\right)\)\)

_Minh ngụy_

\(\(c)\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)\)( tự ghi điều kiện )

\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(\sqrt{x}-\sqrt{y}\right)^2.\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)

\(\(=\frac{x\sqrt{x}+y\sqrt{y}-\left(x\sqrt{x}+x\sqrt{y}-2x\sqrt{y}-2y\sqrt{x}+y\sqrt{x}+y\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)\)

\(\(=\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)\)( phá ngoặc và tính )

\(\(=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\sqrt{xy}\)\)

_Minh ngụy_

2 tháng 7 2019

\(a,\frac{\sqrt{108x^3}}{\sqrt{12x}}=\frac{\sqrt{36.3.x^3}}{\sqrt{3.4.x}}=\frac{6\sqrt{3}.\sqrt{x}^3}{2\sqrt{3}.\sqrt{x}}=3\sqrt{x}^2=3x\)

\(b,\frac{\sqrt{13x^4y^6}}{\sqrt{208x^6y^6}}=\frac{\sqrt{13}.\sqrt{x^4}.\sqrt{y^6}}{\sqrt{16.13}.\sqrt{x^6}.\sqrt{y^6}}=\frac{\sqrt{13}.x^2y^3}{4\sqrt{13}x^3y^3}=\frac{1}{4x}\)

\(c,\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}+\sqrt{y}\right)^2\)

\(=\frac{\sqrt{x}^3+\sqrt{y}^3}{\sqrt{x}+\sqrt{y}}-\left(x+2\sqrt{xy}+y\right)\)

\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-x-2\sqrt{xy}-y\)

\(=x-\sqrt{xy}+y-x-2\sqrt{xy}-y=-3\sqrt{xy}\)

2 tháng 7 2019

\(d,\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\frac{\sqrt{\left(\sqrt{x}-1\right)^2}}{\sqrt{\left(\sqrt{x}+1\right)^2}}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

Đk chỗ này là \(\sqrt{x}-1\ge0\Rightarrow\sqrt{x}\ge\sqrt{1}\Rightarrow x\ge1\)nhé 

\(e,\frac{x-1}{\sqrt{y}-1}.\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}=\frac{x-1}{\sqrt{y}-1}.\frac{y-2\sqrt{y}+1}{\left(x-1\right)^2}\)

\(=\frac{\left(x-1\right)\left(\sqrt{y}-1\right)^2}{\left(\sqrt{y}-1\right)\left(x-1\right)^2}=\frac{\sqrt{y}-1}{x-1}\)

21 tháng 7 2018

a. =\(\frac{x\sqrt{xy}+y\sqrt{x^2}-x\sqrt{y^2}-y\sqrt{xy}}{\sqrt{xy}}\)=\(\frac{x\sqrt{xy}+xy-xy-y\sqrt{xy}}{\sqrt{xy}}\)
=\(\frac{x\sqrt{xy}-y\sqrt{xy}}{\sqrt{xy}}\)=\(\frac{\sqrt{xy}\left(x-y\right)}{\sqrt{xy}}\)=\(x-y\)
b. =\(\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x-1}}\)=\(x+\sqrt{x}+1\)

19 tháng 7 2019

undefinedundefinedcau c í mk thấy bn chép sai đề nên mk sửa lại đề rồi bạn xem lại đề rồi so với bài làm của mk nha có j ko hiểu thì ib mk nha

19 tháng 7 2019

\(a)VT = \dfrac{{{{\left( {\sqrt a + 1} \right)}^2} - 4\sqrt a }}{{\sqrt a - 1}} + \dfrac{{a + \sqrt a }}{{\sqrt a }}\\ = \dfrac{{a + 2\sqrt a + 1 - 4\sqrt a }}{{\sqrt a - 1}} + \dfrac{{\sqrt a \left( {\sqrt a + 1} \right)}}{{\sqrt a }}\\ = \dfrac{{a - 2\sqrt a + 1}}{{\left( {\sqrt a - 1} \right)}} + \sqrt a + 1\\ = \dfrac{{{{\left( {\sqrt a - 1} \right)}^2}}}{{\sqrt a - 1}} + \sqrt a + 1\\ = \sqrt a - 1 + \sqrt a + 1\\ = 2\sqrt a = VP (đpcm) \)

\(b)VT = \dfrac{{x\sqrt x + y\sqrt y }}{{\sqrt x + \sqrt y }} - {\left( {\sqrt x - \sqrt y } \right)^2}\\ = \dfrac{{\left( {\sqrt x + \sqrt y } \right)\left( {x - \sqrt {xy} + y} \right)}}{{\sqrt x + \sqrt y }} - \left( {x - 2\sqrt {xy} + y} \right)\\ = x - \sqrt {xy} + y - x + 2\sqrt {xy} - y\\ = \sqrt {xy} (đpcm)\\ c)VT = \dfrac{{a\sqrt b - b\sqrt a }}{{\sqrt {ab} }}:\dfrac{{a - b}}{{\sqrt a + \sqrt b }}\\ = \dfrac{{\sqrt {ab} \left( {\sqrt a - \sqrt b } \right)}}{{\sqrt {ab} }}.\dfrac{{\sqrt a + \sqrt b }}{{a - b}}\\ = \sqrt a - \sqrt b .\dfrac{{\sqrt a + \sqrt b }}{{a - b}}\\ = \dfrac{{\left( {\sqrt a - \sqrt b } \right)\left( {\sqrt a + \sqrt b } \right)}}{{a - b}}\\ = \dfrac{{a - b}}{{a - b}} = 1 (đpcm)\\ d)VT = \left[ {\dfrac{{{{\left( {\sqrt a - \sqrt b } \right)}^2} + 4\sqrt {ab} }}{{\sqrt a + \sqrt b }} - \dfrac{{a\sqrt b - b\sqrt a }}{{\sqrt {ab} }}} \right]:\sqrt b \\ = \dfrac{{a - 2\sqrt {ab} + b + 4\sqrt {ab} }}{{\sqrt a + \sqrt b }} - \dfrac{{\sqrt {ab} \left( {\sqrt a - \sqrt b } \right)}}{{\sqrt {ab} }}:\sqrt b \\ = \dfrac{{{{\left( {\sqrt a + \sqrt b } \right)}^2}}}{{\sqrt a + \sqrt b }} - \left( {\sqrt a - \sqrt b } \right):\sqrt b \\ = \sqrt a + \sqrt b - \sqrt a + \sqrt b :\sqrt b \\ = \dfrac{{2\sqrt b }}{{\sqrt b }} = 2 (đpcm) \)

Câu c đề sai (đã sửa)

10 tháng 1 2019

a/ \(P=\frac{1}{\sqrt{xy}}\)

b/ \(x^3=8-6x\)

\(\Rightarrow P=\frac{1}{\sqrt{x\left(x^2+6\right)}}=\frac{1}{\sqrt{x^3+6x}}=\frac{1}{\sqrt{8-6x+6x}}=\frac{1}{2\sqrt{2}}\)

15 tháng 8 2017

a) \(\frac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{\left(\sqrt{x}-\sqrt{y}\right)}-\left(\sqrt{x}-\sqrt{y}\right)^2=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}-x+2\sqrt{xy}-y\)

\(=3\sqrt{xy}\)

b) \(\frac{x-y}{\sqrt{y}-1}.\sqrt{\frac{\left(\sqrt{y}-1\right)^4}{\left(x-1\right)^4}}=\frac{x-y}{\sqrt{y}-1}.\frac{\left(\sqrt{y}-1\right)^2}{\left(x-1\right)^2}=\frac{\left(x-y\right)\left(\sqrt{y}-1\right)}{\left(x-1\right)^2}\)

15 tháng 8 2017

a) \(=\frac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{\sqrt{x}-\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=x+\sqrt{xy}+y-x+2\sqrt{xy}-y=3\sqrt{xy}\)

29 tháng 7 2018

a)  \(\frac{\sqrt{4mn^2}}{\sqrt{20m}}=\sqrt{\frac{4mn^2}{20m}}=\sqrt{\frac{n^2}{5}}=\frac{n}{\sqrt{5}}\)

b)  \(\frac{\sqrt{16a^4b^6}}{\sqrt{12a^6b^6}}=\sqrt{\frac{16a^4b^6}{12a^6b^6}}=\sqrt{\frac{4}{3a^2}}=\frac{2}{\sqrt{3}.\left|a\right|}=-\frac{2}{a\sqrt{3}}\)

d)  \(\frac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}=\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}=x+\sqrt{xy}+y\)

e) \(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\sqrt{\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\frac{\left|\sqrt{x}-1\right|}{\sqrt{x}+1}\)

NV
9 tháng 7 2019

\(\left[\frac{\left(1-\sqrt{x}\right)\left(x+\sqrt{x}+1\right)}{1-\sqrt{x}}\right]\left[\frac{1-\sqrt{x}}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\right]^2=\left(x+\sqrt{x}+1\right)\frac{1}{\left(1+\sqrt{x}\right)^2}=\frac{x+\sqrt{x}+1}{x+2\sqrt{x}+1}\)

Đề bài sai

\(\sqrt{2012}-\sqrt{2011}=\frac{1}{\sqrt{2012}+\sqrt{2011}}\)

\(\sqrt{2011}-\sqrt{2010}=\frac{1}{\sqrt{2011}+\sqrt{2010}}\)

Do \(\sqrt{2012}>\sqrt{2010}\) \(\Rightarrow\sqrt{2012}+\sqrt{2011}>\sqrt{2011}+\sqrt{2010}>0\)

\(\Rightarrow\frac{1}{\sqrt{2012}+\sqrt{2011}}< \frac{1}{\sqrt{2011}+\sqrt{2010}}\Rightarrow\sqrt{2012}-\sqrt{2011}< \sqrt{2011}-\sqrt{2010}\)

\(A=\frac{x+2\sqrt{xy}+y-4\sqrt{xy}}{\sqrt{x}-\sqrt{y}}+\frac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x}-\sqrt{y}}+\frac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)

\(=\sqrt{x}-\sqrt{y}+\sqrt{x}-\sqrt{y}=2\sqrt{x}-2\sqrt{y}\)

\(M^2=\left(\sqrt{x-1}+\sqrt{9-x}\right)^2\le2\left(x-1+9-x\right)=16\)

\(\Rightarrow M\le4\Rightarrow M_{max}=4\) khi \(x-1=9-x\Leftrightarrow x=5\)

9 tháng 7 2019

đề câu a) là

\(\left[\frac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right].\left[\frac{1-\sqrt{x}}{1-x}\right]^2\)

4 tháng 10 2019

f)\(\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}:\frac{1}{\sqrt{x}-\sqrt{y}}\)

\(=\frac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}.\left(\sqrt{x}-\sqrt{y}\right)\)

\(=x-y\)

4 tháng 10 2019

b)\(\sqrt{11-4\sqrt{7}}-\sqrt{2}.\sqrt{8+3\sqrt{7}}\)

\(=\sqrt{7-4\sqrt{7}+4}-\sqrt{16+6\sqrt{7}}\)

\(=\sqrt{\left(\sqrt{7}-2\right)^2}-\sqrt{9+6\sqrt{7}+7}\)

\(=\sqrt{7}-2-\sqrt{\left(3+\sqrt{7}\right)^2}\)(vì \(\sqrt{7}>2\))

\(=\sqrt{7}-2-3-\sqrt{7}=-5\)