Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có a = 3. q + 1 ( q là số tự nhiên)
b = 3 . p + 2 ( p là số tự nhiên)
a.b = (3q + 1)(3p + 2)
= 9qp + 6q + 3p + 2
tổng trên có 9qp, 6q, 3p đều chia hết cho 3 do đó tổng chia cho 3 dư 2, nghĩa là ab chia cho 3 dư 2.
a có dạng là 4x+2
b có dạng là 4y+2
\(\left(4x+2\right)\left(4y+2\right)\)
\(16xy+8y+8x+4\)
\(4\left(4xy+2y+2x+1\right)⋮4\)
vậy đáp án \(a\left(dư0\right)\)
a) Vì a chia 3 dư 1 nên a có dạng 3m+1 , vì b chia 3 dư 2 nên b có dạng 3n+2. \(\left(m,n\in N\right)\)
Ta có \(ab=\left(3m+1\right)\left(3n+2\right)=3mn+6m+3n+2\)
\(=3\left(mn+2m+n\right)+2\)
Vậy ab chia 3 dư 2 .
b) Vì a chia 5 dư 4 nên a có dạng 5k-1 \(\left(k\in N\right)\)
Ta có \(a^2=\left(5k-1\right)^2=25k^2-10k+1=5\left(5k^2-2k\right)+1\)
Vậy \(a^2\) chia 5 dư 1 .
a.Ta có a /4 dư 2 là 6
b/4 dư 1 là 5
Vậy a*b=6*5=30 chia 4 dư 2
b.Giã sử đặt a là 1 ta co a^2 =1, 1/4=0 dư 1 thế các số lẻ khác thì kết quả luôn luôn dư 1
c.cá số chẳn khi bình phương đều chia hết chõ vì thế các số lẻ bình phương mới không chia hết cho 4 vì thế các số dư luôn luôn 1
a) Vì a chia 4 dư 2 nên a = 4k + 2
b chia 4 dư 1 nên b = 4t + 1
a.b = ( 4k + 2 )( 4t + 1 ) = 16kt + 4k + 8t + 2 chia 4 dư 2
Vậy ab chia 4 dư 2
b) Vì a là số lẻ nên a = 2k + 1
a² = ( 2k + 1)( 2k + 1 ) = 4k² + 4k + 1 chia 4 dư 1
Vậy a² chia 4 dư 1
c) Vì a² là số chính phương ( a là số tự nhiên )
suy ra a² chia 4 dư 0 hoặc 1
Vì a chia 3 dư 1 nên số a có dạng 3k+1
Số b chia 3 dư 2 nên số b có dạng 3k+2
ab=(3k+1)(3k+2)=9k^2+6k+3k+2
Vi 9k^2, 6k và 3k đều chia hết cho 3
Nên theo đề ab chia 3 dư 2
3 lần số bé là:
1006-124=882
Số bé là:
882:3=294
Số lớn là:
294*2+124=712
gọi 2 số đó là a,b (a,b là số tự nhiên, a>b)
Theo bài ra thì a+b=1006 và a chia b được 2 dư 124
=>(a-124)/b=2 => a-124=2b =>a=124+2b
mà a+b=1006
suy ra 124+2b+b=1006 => b=294; a=712
Đặt A=5k+1, B=5k+4 \(\left(k\in N\right)\)
\(\Rightarrow ab+1=\left(5k+1\right)\left(5k+4\right)+1=25k^2+25k+5=5\left(5k^2+5k+1\right)⋮5\left(đpcm\right)\)
\(ab+1=\left(5k+1\right)\left(5k+4\right)+1\)
\(=25k^2+20k+5k+4+1\)
\(=25k^2+25k+5⋮5\)
Do a chia 5 dư 1 => a = 5.m + 1; b chia 5 dư 2 => b = 5.n + 2 (m;n thuộc N*)
Ta có: a.b = (5.m + 1).(5.n + 2)
= (5.m + 1).5.n + (5.m + 1).2
= 25.m.n + 5.n + 10.m + 2 chia 5 dư 2
=> a.b chia 5 dư 2
Vì a chia 5 dư 1 nên đặt a = 5x + 1 (x Î N); b chia 5 dư 4 nên đặt b = 5y + 4(y Î N).
Ta có a.b + 1 = (5x + 1)(5y + 4) + 1 = 25xy + 20x + 5y + 5.
Þ ab + 1 = 5(5xy + 4x + y + 1) ⋮ 5 (đpcm).
Đặt a=4m+1, b=4n+2(m,n\(\in\)N)
=>ab=(4m+1)(4n+2)
= 16mn+8m+4n+2
Ta thấy 16mn+8m+4n chia hết cho 4
=> ab:14 dư 2