K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2016

Ta có: a + b chẵn và a,b nguyên tố cùng nhau nên a,b là hai số lẻ

*chứng minh P chia hết cho 8

Ta có (a + b) = 2k

a - b = a + b - 2b = 2k - 2b = 2(k - b)

Với k là số chẵn thì (a + b) chia hết cho 4, (a - b) chia hết cho 2

=> P chia hết cho 8

Với k là số lẻ thì (a + b) chia hết cho 2, (a - b) chia hết cho 4

=> P chia hết cho 8

Vậy ta có P chia hết cho 8 (1)

*Chứng minh P chia hết cho 3

Vì cả a, b đều là số lẻ nên a,b chia cho 3 dư 0 hoặc dư 1

Với 1 trong 2 số a,b chia hết cho 3 thì P chia hết cho 3

Với a,b chia cho 3 dư 1 thì (a - b) chia hết cho 3

Vậy P chia hết cho 3

Từ (1) và (2) kết hợp với việc 3 và 8 là hai số nguyên tố cùng nhau thì ta => P chia hết cho 24

19 tháng 11 2016

alibaba nguyễn: Khi chứng minh P chia hết cho 3

a; b lẻ vx có thể chia 3 dư 2 chứ; vd như 5; 17; 29; ... chẳng hạn

t nghĩ lm thế này: Câu hỏi của letienluc - Toán lớp 6 | Học trực tuyến

19 tháng 11 2016
  • Chứng minh P chia hết cho 8

Do ƯCLN(a;b) = 1 và a + b là số chẵn nên a và b cùng lẻ

Giả sử a = 2.m + 1; b = 2.n + 1 (m;n ϵ N)

Ta có: P = a.b.(a - b).(a + b)

= (2.m + 1).(2.n + 1).[(2.m + 1) - (2.n + 1)].[(2.m + 1) + (2.n + 1)]

= (2.m + 1).(2.n + 1).(2.m - 2.n).(2.m + 2.n + 2)

= (2.m + 1).(2.n + 1).2.(m - n).2.(m + n + 1)

= (2.m + 1).(2.n + 1).4.(m - n).(m + n + 1)

+ Nếu m - n chẵn thì P chia hết cho 2.4 = 8

+ Nếu m - n lẻ => m + n lẻ (vì m - n và m + n luôn cùng tính chẵn lẻ)

=> m + n + 1 chẵn => P chia hết cho 2.4 = 8

Như vậy, P luôn chia hết cho 8 (1)

  • Chứng minh P chia hết cho 3

Vì ƯCLN(a;b)=1 nên a và b không cùng đồng thời là bội của 3

+ Nếu 1 trong 2 số a; b chia hết cho 3 dễ dàng suy ra P chia hết cho 3

+ Nếu a và b cùng dư khi chia cho 3 => a - b chia hết cho 3

=> P chia hết cho 3

+ Nếu a và b khác dư khi chia cho 3 (trừ trường hợp chia 3 dư 0)

Như vậy, trong 2 số a; b có 1 số chia 3 dư 1; 1 số chia 3 dư 2

=> a + b chia hết cho 3 => P chia hết cho 3

Do đó, P luôn chia hết cho 3 (2)

Từ (1) và (2) mà (3;8)=1 => P chia hết cho 24 (đpcm)

 

 

 

19 tháng 11 2016

I can not believe it , This is our GOD

11 tháng 11 2016

không biết

bạn nhé

tk nha@@@@@@@@@@@@@@@@@@@@

LOL

1/ a)Cho A= 20+21+22+23+24+25 +26 .........+ 299  CMR: A chia hết cho 31 b)tìm số tự nhiên n để 3n+4 chia hết cho n -12/tìm hai số nguyên dương a, b  biết  [ a,b] = 240 và (a,b) = 163/tìm hai số nguyên dương a,b biết rằng ab=216 và (a ,b)=64/tìm hai số nguyên dương a,b biết rằng ab=180 , [a,b] =605/tìm hai số nguyên dương a,b biết a/b =2,6 và (a,b) =56/ tìm a,b biết a/b=4/5 và [ a,b ] = 1407/tìm số nguyên dương  a,b biết...
Đọc tiếp

1/ a)Cho A= 20+21+22+23+24+25 +26 .........+ 299  CMR: A chia hết cho 31 

b)tìm số tự nhiên n để 3n+4 chia hết cho n -1

2/tìm hai số nguyên dương a, b  biết  [ a,b] = 240 và (a,b) = 16

3/tìm hai số nguyên dương a,b biết rằng ab=216 và (a ,b)=6

4/tìm hai số nguyên dương a,b biết rằng ab=180 , [a,b] =60

5/tìm hai số nguyên dương a,b biết a/b =2,6 và (a,b) =5

6/ tìm a,b biết a/b=4/5 và [ a,b ] = 140

7/tìm số nguyên dương  a,b biết a+b = 128 và (a ,b)=16

8/ a)tìm a,b biết a+b = 42 và [a,b] = 72 

b)tìm a,b biết a-b =7 , [a,b] =140

9/tìm hai số tự nhiên , biết rằng tổng cúa chúng bằng 100 và có UwCLN là 10

10/ tìm 2 số tự nhiên biết ƯCLN của chúng là 5 và chúng có tích là 300

11/ chứng minh rằng nếu số nguyên tố p> 3 thì (p - 1) . (p + 1)  chia hết cho 24

12/ tìm hai số tự nhiên a,b (a < b ) biết ƯCLN (a,b ) = 12 ,  BCNN(a,b) = 180

 

2
29 tháng 10 2015

BÀI NÀY Ở ĐÂU MÀ NHIỀU THẾ BẠN!?

GIẢI CHẮC ĐÃ LẮM ĐÓ

29 tháng 10 2015

câu 1 a) thíu là chứng minh rằng a chia hết cho 31

 

29 tháng 2 2020

sorry,em mới có học lớp 5

HÌ HÌ

29 tháng 2 2020

Bài 1 : 

b ) Vì A là tổng các số nguyên âm lẻ có hai chữ số .

\(\Rightarrow\)A = - 11 + ( - 13 ) + ( - 15 ) + ... + ( - 99 )

Vì b tổng các số nguyên dương chẵn có hai chữ số .

\(\Rightarrow\) B = 10 + 12 + 14 + ... + 98

Vậy tổng A + b là :

\(\Rightarrow\) A + b = [ - 11 + ( - 13 ) + ( - 15 ) + ... + ( - 99 ) ] + ( 10 + 12 + 14 + ... + 98 )

\(\Rightarrow\) A + b = ( 10 - 11 ) + ( 12 − 13 ) + ( 14 - 15 ) + ... + ( 98 - 99 )

\(\Rightarrow\) A + b = - 1 + ( - 1 ) + ( - 1 ) + . . + ( - 1 ) ( 50 số hạng )

\(\Rightarrow\) A + b = ( - 1 ) × 50

\(\Rightarrow\)A + b = - 50