Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho các số thực dương a, b, c thỏa mãn a2 + b2 + c2 = 3.
CMR: 1/a + 1/b + 1/c + 3/2 * (a+b+c) >= 15/2
\(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{3}{2}\left(a+b+c\right)\)\(=\left(\frac{1}{a}+\frac{3a}{2}\right)+\left(\frac{1}{b}+\frac{3b}{2}\right)+\left(\frac{1}{c}+\frac{3c}{2}\right)\)
*Nháp*
Dự đoán điểm rơi tại a = b = c = 1 khi đó \(VT=\frac{15}{2}\)
Ta dự đoán BĐT phụ có dạng \(\frac{1}{x}+\frac{3x}{2}\ge mx^2+n\)(Ta thấy các hạng tử trong điều kiện đã cho ban đầu đều có bậc là 2 nên VP của BĐT phụ cũng có bậc là 2) (*)
Do đó ta có: \(\frac{1}{a}+\frac{3a}{2}\ge ma^2+n\);\(\frac{1}{b}+\frac{3b}{2}\ge mb^2+n\);\(\frac{1}{c}+\frac{3c}{2}\ge mc^2+n\)
Cộng theo vế của 3 BĐT trên, ta được: \(VT\ge m\left(a^2+b^2+c^2\right)+3n=3\left(m+n\right)=\frac{15}{2}\)
\(\Rightarrow m+n=\frac{5}{2}\Rightarrow n=\frac{5}{2}-m\)
Thay\(n=\frac{5}{2}-m\)vào (*), ta được: \(\frac{1}{x}+\frac{3x}{2}\ge mx^2+\frac{5}{2}-m\)
\(\Leftrightarrow\frac{1}{x}+\frac{3x}{2}-\frac{5}{2}\ge m\left(x^2-1\right)\Leftrightarrow\frac{\left(x-1\right)\left(3x-2\right)}{2x\left(x+1\right)}\ge m\left(x-1\right)\)
\(\Leftrightarrow m\le\frac{3x-2}{2x\left(x+1\right)}\)(**)
Đồng nhất x = 1 vào (**), ta được: \(m=\frac{1}{4}\Rightarrow n=\frac{9}{4}\)
Như vậy, ta được BĐT phụ: \(\frac{1}{x}+\frac{3x}{2}\ge\frac{x^2+9}{4}\)
GIẢI:
Ta có a,b,c là các số thực dương và \(a^2+b^2+c^2=3\Rightarrow0< a^2;b^2;c^2\le3\Rightarrow0< a,b,c\le\sqrt{3}\)
Ta chứng minh BĐT phụ: \(\frac{1}{x}+\frac{3x}{2}\ge\frac{x^2+9}{4}\)(với \(0< x\le\sqrt{3}\))
\(\Leftrightarrow\frac{\left(4-x\right)\left(x-1\right)^2}{4x}\ge0\)(Đúng với mọi \(0< x\le\sqrt{3}\))
Áp dụng ta được: \(\frac{1}{a}+\frac{3a}{2}\ge\frac{a^2+9}{4}\);\(\frac{1}{b}+\frac{3b}{2}\ge\frac{b^2+9}{4}\);\(\frac{1}{c}+\frac{3c}{2}\ge\frac{c^2+9}{4}\)
Cộng theo vế của 3 BĐT trên, ta được: \(VT\ge\frac{\left(a^2+b^2+c^2\right)+9.3}{4}=\frac{15}{2}\)
Đẳng thức xảy ra khi a = b = c = 1
Ta có: \(a^2+2b^2+3=\left(a^2+b^2\right)+\left(b^2+1\right)+2\ge2ab+2b+2\)
\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2\left(ab+b+1\right)}\)
Tương tự: \(\frac{1}{b^2+2c^2+3}\le\frac{1}{2\left(bc+c+1\right)};\)\(\frac{1}{c^2+2a^2+3}\le\frac{1}{2\left(ca+a+1\right)}\)
\(\Rightarrow VT\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)\)
\(=\frac{1}{2}\left(\frac{c}{abc+bc+c}+\frac{1}{bc+c+1}+\frac{bc}{abc^2+abc+bc}\right)\)
\(=\frac{1}{2}\left(\frac{c}{bc+c+1}+\frac{1}{bc+c+1}+\frac{bc}{bc+c+1}\right)=\frac{1}{2}\)
Đẳng thức xảy ra khi a = b = c = 1
ÁP DỤNG BĐT BUNHIA TA CÓ:
\(\left(a^2+1+1+1\right)\left(1+\left(\frac{b+c}{2}\right)^2+\left(\frac{b+c}{2}\right)^2+1\right)\ge\left(1.a+\frac{b+c}{2}.1+\frac{b+c}{2}.1+1.1\right)^2\)
\(\Leftrightarrow4\left(a^2+3\right)\left(2+\frac{\left(b+c\right)^2}{2}\right)\ge4\left(a+b+c+1\right)^2\)
MẶT KHÁC ÁP DỤNG BĐT AM-GM TA CÓ:
\(\left(b^2+3\right)\left(c^2+3\right)=3b^2+3c^2+b^2c^2+1+8=2b^2+2c^2+\left(b^2+c^2\right)+\left(b^2c^2+1\right)+8\)
\(\ge2b^2+2c^2+2bc+2bc+8=2\left(b+c\right)^2+8=4\left(\frac{\left(b+c\right)^2}{2}+2\right)\)
NHƯ VẬY:
\(\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(\frac{\left(b+c\right)^2}{2}+2\right)\left(a^2+3\right)\ge4\left(a+b+c+1\right)^2\)
ĐẲNG THỨC XẢY RA KHI VÀ CHỈ KHI a=b=c=1
Ta dự đoán được đẳng thức xảy ra khi a = b = c = 1.
Theo nguyên lí Dirichlet tồn tại trong ba số\(a^2-1;b^2-1;c^2-1\) tồn tại ít nhất hai số có tích không âm. Không mất tính tổng quát,giả sử rằng \(\left(a^2-1\right)\left(b^2-1\right)\ge0\)
\(\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)
\(\Leftrightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8=4\left(a^2+b^2+2\right)\)
\(\Leftrightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+1+1\right)\)
\(\Leftrightarrow VT\ge4\left(a^2+b^2+1+1\right)\left(1+1+1+c^2\right)\)
Áp dụng BĐT Bunhiacopxki suy ra \(VT\ge4\left(a+b+c+1\right)^2\Rightarrow Q.E.D\)
Dấu "=" xảy ra khi a = b = c = 1
Đúng không ạ???
bn ơi bn viết
chữ nhỏ quá đó
bn ấn vào chữ x2
à bn mình nhìn rõ
nhưng có chữ
ko đọc được
1/ Ta cần c/m: \(3x^2+3y^2+3z^2\ge x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
Tức là \(2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (đúng)
Ta có đpcm.
\(3+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=12\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
\(\Leftrightarrow\)\(4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{16}\le\frac{49}{16}\)
\(\Leftrightarrow\)\(\left[2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{1}{4}\right]^2\le\frac{49}{16}\)
\(\Leftrightarrow\)\(\frac{-7}{4}\le2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{1}{4}\le\frac{7}{4}\)
\(\Leftrightarrow\)\(\frac{-3}{4}\le\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le1\)
Có : \(\frac{1}{4a+b+c}+\frac{1}{a+4b+c}+\frac{1}{a+b+4c}\le\frac{1}{36}\left(\frac{6}{a}+\frac{6}{b}+\frac{6}{c}\right)\le\frac{1}{6}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=3\)
...
Đặt \(a=x+\frac{1}{3},b=y+\frac{1}{3},c=z+\frac{1}{3}\)
\(\Rightarrow a+b+c=x+y+z+1=1\Rightarrow x+y+z=0\)
Ta có \(a^2+b^2+c^2=\left(x+\frac{1}{3}\right)^2+\left(y+\frac{1}{3}\right)^2+\left(z+\frac{1}{3}\right)^2=\left(x^2+y^2+z^2\right)+\frac{2}{3}\left(x+y+z\right)+\frac{1}{3}\)
\(=\left(x^2+y^2+z^2\right)+\frac{1}{3}\ge\frac{1}{3}\)
Dấu "=" xảy ra khi x = y = z = 0 => a = b = c = 1/3
Thay 1=\(\frac{a^2+b^2+c^2}{3}\)vào va rút gọn ta được
VT= \(\frac{4}{3}\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{1}{3}\left(\frac{c^2}{b}+\frac{a^2}{c}+\frac{b^2}{a}\right)+\frac{1}{3}\left(a+b+c\right)\)(1)
Áp dụng \(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\left(bunhiacopxky\right)\) ta được
(1) \(\ge\frac{4}{3}\frac{\left(a+b+c\right)^2}{a+b+c}+\frac{1}{3}\frac{\left(a+b+c\right)^2}{a+b+c}+\frac{1}{3}\left(a+b+c\right)=2\left(a+b+c\right).\)
Dấu'=' khi a=b=c
Áp dụng BĐT AM-GM ta có:
\(\frac{a+1}{1+b^2}=a+1-\frac{b^2\left(a+1\right)}{1+b^2}\ge a+1-\frac{b\left(a+1\right)}{2}=a+1-\frac{ab}{2}-\frac{b}{2}\)
Tương tự cho 2 BĐT còn lại cũng có:
\(\frac{b+1}{1+c^2}\ge b+1-\frac{bc}{2}-\frac{c}{2};\frac{c+1}{1+a^2}\ge a+1-\frac{ac}{2}-\frac{a}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge a+b+c+3-\frac{ab+bc+ca}{2}-\frac{a+b+c}{2}\)
\(\ge6-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}-\frac{3}{2}=3=VP\)
Khi \(a=b=c=1\)
\(VT=a-\frac{ab^2}{a^2+b^2}+b-\frac{b}{b^2+1}+1-\frac{a^2}{a^2+1}\)
Áp dụng BĐT AM-GM:\(a^2+b^2\ge2ab\)
\(b^2+1\ge2b\)
\(a^2+1\ge2a\)
cộng theo vế:\(VT\ge a+b+1-\frac{ab^2}{2ab}-\frac{b}{2b}-\frac{a^2}{2a}=a+b+1-\frac{b}{2}-\frac{1}{2}-\frac{a}{2}=\frac{a+b+1}{2}\)
Dấu = xảy ra khi a=b=1
VT=a−ab2a2+b2 +b−bb2+1 +1−a2a2+1
Áp dụng BĐT AM-GM:a2+b2≥2ab
b2+1≥2b
a2+1≥2a
cộng theo vế:VT≥a+b+1−ab22ab −b2b −a22a =a+b+1−b2 −12 −a2 =a+b+12
Dấu = xảy ra khi a=b=1