K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2018

trên mạng có đó Triphai Tyte

3 tháng 11 2018

cho mình xin link đi

11 tháng 9 2018

B=\(2\sqrt{2012}\)nhé

nhanh giúp mình với

21 tháng 8 2019

\(\left(\sqrt{2015}+\sqrt{2018}\right)^2=4033+2\sqrt{2015\cdot2018}\)

\(\left(\sqrt{2016}+\sqrt{2017}\right)^2=4033+2\sqrt{2016\cdot2017}\)

\(2015\cdot2018=2015\cdot2017+2015=2017\cdot\left(2015+1\right)-2017+2015\)

\(=2017\cdot2016-2\)

\(\Rightarrow2015\cdot2018< 2016\cdot2017\)

\(\Rightarrow\sqrt{2015}+\sqrt{2018}< \sqrt{2016}+\sqrt{2017}\)

9 tháng 8 2020

có bạn nào giải thích cho mình từ đoạn 2015.2018=2015.2017+2015 trở đi được k? mình cảm ơn

1 tháng 7 2017

Giả sử z là số lớn nhất trong 3 số 

Từ đề bài ta có:

\(\sqrt{x+2011}+\sqrt{y+2012}+\sqrt{z+2013}=\sqrt{z+2011}+\sqrt{x+2012}+\sqrt{y+2013}\)

\(\Leftrightarrow\sqrt{x+2012}-\sqrt{x+2011}+\sqrt{y+2013}-\sqrt{y+2012}=\sqrt{z+2012}-\sqrt{z+2011}+\sqrt{z+2013}-\sqrt{z+2012}\)

\(\Leftrightarrow\frac{1}{\sqrt{x+2012}+\sqrt{x+2011}}+\frac{1}{\sqrt{y+2013}+\sqrt{y+2012}}=\frac{1}{\sqrt{z+2012}+\sqrt{z+2011}}+\frac{1}{\sqrt{z+2013}+\sqrt{z+2012}}\)

Ta lại có:

\(\hept{\begin{cases}\frac{1}{\sqrt{x+2012}+\sqrt{x+2011}}\ge\frac{1}{\sqrt{z+2012}+\sqrt{z+2011}}\\\frac{1}{\sqrt{y+2013}+\sqrt{y+2012}}\ge\frac{1}{\sqrt{z+2013}+\sqrt{z+2012}}\end{cases}}\)

Dấu = xảy ra khi x = y = z

Tương tự cho trường hợp x lớn nhất với y lớn nhất.

5 tháng 7 2017

fdy 'rshniytguo;yhuyt65edip;ioy86fo87ogtb eubuiltgr6sdwjhytguyh8 ban oi bai nay mac kho giai vao cut sit

20 tháng 8 2015

ta có A+B 

=\(\sqrt{2013}-\sqrt{2012}+\sqrt{2014}-\sqrt{2013}\)         =\(-\sqrt{2012}+\sqrt{2014}\)      (1)

vì (1)>0 nên A+B>0 hay A>B

28 tháng 2 2016

A=\(\sqrt{2013}\)\(\sqrt{2012}\) =\(\frac{1}{\sqrt{2013}+\sqrt{2012}}\)

B=\(\sqrt{2014}-\sqrt{2013}=\frac{1}{\sqrt{2014}+\sqrt{2013}}\)

sao sanh \(A=\frac{1}{\sqrt{2013}+\sqrt{2012}}>\frac{1}{\sqrt{2014}+\sqrt{2013}}\)

h cho minh nhieu nha

20 tháng 4 2017

Đặt \(\hept{\begin{cases}a=x+2011\\b=y+2011\\c=z+2011\end{cases}}\) Ta có Hệ:

\(\hept{\begin{cases}\sqrt{a}+\sqrt{b+1}+\sqrt{c+2}\left(A\right)=\sqrt{b}+\sqrt{c+1}+\sqrt{a+2}\left(B\right)\\\sqrt{b}+\sqrt{c+1}+\sqrt{a+2}\left(B\right)=\sqrt{c}+\sqrt{a+1}+\sqrt{b+2}\left(C\right)\end{cases}}\)

Vai trò \(x,y,z\) bình đẳng

Giả sử \(c=Max\left(a;b;c\right)\) vì \(A=C\) ta có:

\(\sqrt{a}+\sqrt{b+1}+\sqrt{c+2}=\sqrt{c}+\sqrt{a+1}+\sqrt{b+2}\)

\(\Leftrightarrow\left(\sqrt{a+1}-\sqrt{a}\right)+\left(\sqrt{b+2}-\sqrt{b+1}\right)\)

\(=\sqrt{c+2}-\sqrt{c}=\left(\sqrt{c+2}-\sqrt{c+1}\right)+\left(\sqrt{c+1}-\sqrt{c}\right)\)

\(\Leftrightarrow\frac{1}{\sqrt{a+1}+\sqrt{a}}+\frac{1}{\sqrt{b+2}+\sqrt{b+1}}\)

\(=\frac{1}{\sqrt{c+2}+\sqrt{c+1}}+\frac{1}{\sqrt{c+1}+\sqrt{c}}\left(1\right)\)

Mặt khác \(\hept{\begin{cases}c\ge a\Rightarrow\frac{1}{\sqrt{a+1}+\sqrt{a}}\le\frac{1}{\sqrt{c+1}+\sqrt{c}}\\c\ge b\Rightarrow\frac{1}{\sqrt{b+2}+\sqrt{b+1}}\le\frac{1}{\sqrt{c+2}+\sqrt{c+1}}\end{cases}}\)

Suy ra \(\left(1\right)\) xảy ra khi \(a=b=c\Leftrightarrow x=y=z\) (Đpcm)