K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2018

từ đề bài ta có \(\frac{A}{B}=\frac{\frac{9}{1}+\frac{8}{2}+\frac{7}{3}+...+\frac{1}{9}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)

\(\frac{A}{B}=\frac{\left(\frac{8}{2}+1\right)+\left(\frac{7}{3}+1\right)+...+\left(\frac{1}{9}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)

\(\frac{A}{B}=\frac{\frac{10}{2}+\frac{10}{3}+...+\frac{10}{9}+\frac{10}{10}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)

\(\frac{A}{B}=\frac{10\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}}\)

\(\frac{A}{B}=10\)

4 tháng 7 2018

a) \(A=\frac{5^4.20^4}{25^5.4^5}=\frac{5^4.\left(2^2.5\right)^4}{5^{2^5}.\left(2^2\right)^5}=\frac{5^8.2^8}{5^{10}.2^{10}}=\frac{1}{\left(5^{10}:5^8\right).\left(2^{10}:2^8\right)}=\frac{1}{5^2.2^2}=\frac{1}{25.4}=\frac{1}{100}\)

b) \(B=\frac{2^{30}.5^7+2^{13}.5^{27}}{2^{27}.5^7+2^{10}.5^{27}}\)\(=\frac{2^3+2^3}{1}=\frac{8+8}{1}=16\)

c) \(C=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...........+\frac{1}{2^{100}}\)

\(\Rightarrow2C=1+\frac{1}{2}+\frac{1}{2^2}+..........+\frac{1}{2^{99}}\)

\(\Rightarrow2C-C=\left(1+\frac{1}{2}+\frac{1}{2^2}+.........+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...........+\frac{1}{2^{100}}\right)\)

\(\Rightarrow C=1-\frac{1}{2^{100}}\)

d) \(D=1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+.........+\frac{1}{5^{100}}\)

\(\Rightarrow5D=5+1+\frac{1}{5^2}+\frac{1}{5^3}+...........+\frac{1}{5^{101}}\)

\(\Rightarrow5D-D=\left(5+1+\frac{1}{5^2}+\frac{1}{5^3}+.........+\frac{1}{5^{101}}\right)-\left(1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+..........+\frac{1}{5^{100}}\right)\)

\(\Rightarrow4D=5-\frac{1}{5^{101}}\)

\(\Rightarrow D=\frac{5-\frac{1}{5^{101}}}{4}\)

4 tháng 7 2018

a) \(A=\frac{5^4x20^4}{25^5x4^5}=\frac{5^4x\left(2^2x5\right)^4}{\left(5^2\right)^5x\left(2^2\right)^5}=\frac{5^8.2^8}{5^{10}.2^{10}}=\frac{1}{5^2x2^2}=\frac{1}{25.4}=\frac{1}{100}\)

b) \(B=\frac{2^{30}x5^7+2^{13}x5^{27}}{2^{27}x5^7+2^{10}x5^{27}}=\frac{2^{13}.5^7.\left(2^{17}+5^{20}\right)}{2^{10}.5^7.\left(2^{17}+5^{20}\right)}=2^3=8\)

c) \(C=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(\Rightarrow2C=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(\Rightarrow2C-C=1-\frac{1}{2^{100}}\)

\(C=1-\frac{1}{2^{100}}\)

phần d bn lm tương tự như phần c nha!
 

18 tháng 9 2018

1/ Ta có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{2^2}{4}=\frac{4}{4}=1\)

Dấu "=" xảy ra khi x=y=1

Máy mình bị lỗi nên ko nhìn được các bài tiếp theo

Chúc bạn học tốt :)

18 tháng 9 2018

Ta có : x+y=2 => x=2-y. Thay vào bt ta đc : xy= (2-y).y = 2y -y^2    

Vì y^2 >= 0 =>2y-y^2 nhỏ hơn hoặc bằng 0

19 tháng 3 2018

Ta có : 

\(\frac{\frac{2}{5}-\frac{2}{9}+\frac{2}{11}}{\frac{7}{5}-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{\frac{7}{6}-\frac{7}{8}+\frac{7}{10}}\)

\(=\)\(\frac{2\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}{7\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}-\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{\frac{7}{2}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{5}\right)}\)

\(=\)\(\frac{2}{7}-\frac{1}{\frac{7}{2}}\)

\(=\)\(\frac{2}{7}-\frac{2}{7}\)

\(=\)\(0\)

Chúc bạn học tốt ~ 

19 tháng 3 2018

thank nha

27 tháng 5 2018

a) \(A=2^{24}=\left(2^3\right)^8=8^8.\)(1)

\(B=3^{16}=\left(3^2\right)^8=9^8\)(2)

Từ (1) và (2) \(\Rightarrow A< B\)

Vậy \(A< B.\)

b) \(B=\left(0,3\right)^{30}=\left(0,3^2\right)^{15}=0,09^{15}\)(1)

\(A=\left(0,1\right)^{15}\)(2)

Từ (1) và (2) \(\Rightarrow A>B\)

Vậy \(A>B.\)

c) \(A=\left(\frac{-1}{4}\right)^8=\left(\frac{1}{4}\right)^8=\left[\left(\frac{1}{2}\right)^2\right]^8=\left(\frac{1}{2}\right)^{16}\)(1)

\(B=\left(\frac{1}{8}\right)^5=\left[\left(\frac{1}{2}\right)^3\right]^5=\left(\frac{1}{2}\right)^{15}\)(2)

Từ (1) và (2) \(\Rightarrow A>B\)

Vậy \(A>B.\)

d) \(A=102^7=102^6.102\)(1)

\(B=9^{13}=9^{12}.9=\left(9^2\right)^6.9=81^6.9\)(2)'

Từ (1) và (2) \(\Rightarrow A>B\)

Vậy \(A>B.\)

e) \(8A=8\frac{8^{18}+1}{8^{19}+1}=\frac{8^{19}+8}{8^{19}+1}=1+\frac{7}{8^{19}+1}\)(1)

\(8B=8\frac{8^{23}+1}{8^{24+1}}=\frac{8^{24}+8}{8^{24}+1}=1+\frac{7}{8^{24}+1}\)(2)

Từ (1) và (2) \(\Rightarrow8A>8B\Rightarrow A>B\)

Vậy \(A>B.\)

f) \(A=\frac{5^5}{5+5^2+5^3+5^4}=\frac{5^4}{1+5+5^2+5^3}=\frac{625}{156}>\frac{468}{156}=3.\)(1)

\(B=\frac{3^5}{3+3^2+3^3+3^4}=\frac{3^4}{1+3+3^2+3^3}=\frac{81}{40}< \frac{120}{40}=3.\)(2)

Từ (1) và (2) \(\Rightarrow A>B\)

Vậy \(A>B.\)

27 tháng 5 2018

a, ta có A=2^24=64^4

             B=3^16=81^4

Vì 64^4<81^4

Vậy 2^24<3^36

b, ta có A=0,1^15

             B=0,3^30=0,09^15

Vì 0,1^15< 0,09^15

Vậy 0,1^15<0,3^30

11 tháng 12 2019

Bài 1:

a) \(\left(\frac{9}{25}-2.18\right):\left(3\frac{4}{5}+0,2\right)\)

\(=\left(\frac{9}{25}-36\right):\left(\frac{19}{5}+\frac{1}{5}\right)\)

\(=\left(\frac{9}{25}-\frac{900}{25}\right):4\)

\(=-\frac{891}{25}.\frac{1}{4}\)

\(=-\frac{891}{100}\)

b) \(\frac{3}{8}.19\frac{1}{3}-\frac{3}{8}.33\frac{1}{3}\)

\(=\frac{3}{8}.\frac{58}{3}-\frac{3}{8}.\frac{100}{3}\)

\(=\frac{3}{8}\left(\frac{58}{3}-\frac{100}{3}\right)\)

\(=\frac{3}{8}\left(-\frac{42}{3}\right)\)

\(=\frac{3}{8}.\left(-14\right)\)

\(=-\frac{21}{4}\)

c) \(1\frac{4}{23}+\frac{5}{21}-\frac{4}{23}+0,5+\frac{16}{21}\)

\(=\frac{27}{23}+\frac{5}{21}-\frac{4}{23}+\frac{1}{2}+\frac{16}{21}\)

\(=\frac{27}{23}+\frac{5}{21}+\left(-\frac{4}{23}\right)+\frac{1}{2}+\frac{16}{21}\)

\(=\left[\frac{27}{23}+\left(-\frac{4}{23}\right)\right]+\left(\frac{5}{21}+\frac{16}{21}\right)+\frac{1}{2}\)

\(=1+1=2\)

d) \(\frac{21}{47}+\frac{9}{45}+\frac{26}{47}+\frac{4}{5}\)

\(=\frac{21}{47}+\frac{9}{45}+\frac{26}{47}+\frac{36}{45}\)

\(=\left(\frac{21}{47}+\frac{26}{47}\right)+\left(\frac{9}{45}+\frac{36}{45}\right)\)

\(=1+1=2\)