K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1 2017

a + b + c + 8 = 11...1 + 11...1 + 66...6 + 8

\(\downarrow\) \(\downarrow\) \(\downarrow\)

2n số 1 n+1 số 1 n số 6

\(=\frac{10^{2n}-1}{9}+\frac{10^{n+1}-1}{9}+\frac{6\left(10^n-1\right)}{9}+8\)

\(=\frac{10^{2n}-1+10.10^n-1+6.10^n-6+72}{9}\)

\(=\frac{10^{2n}+16.10^n+64}{9}\)

\(=\left(\frac{10n+8}{3}\right)^2\)

\(=\left(\frac{10n...8}{3}\right)^2\)

\(=33...36^2\)

\(\downarrow\)

n-1 số 3

16 tháng 6 2015

Ta có:

a+b+c+8

=111...1(2n c/s 1)+111...1(n+1 c/s1)+666...6(n chữ số 6)+8

=111...1(n-1 c/s 1)2888...8(n c/s 8)+8

=111...1(n-1 c/s 1)2888..8(n-2 c/s 8)96

Ta thấy:

362(1c/s3)=1296(1 c/s 1;0 c/s 8)

3362(2c/s 3)=112896(2 c/s 1;1c/s 8)

33362(3c/s 3)=11128896(3 c/s 1;2 c/s 8)

=>333...362(n-1 c/s 3)=111...1(n-1 c/s 1)2888..8(n-2 c/s 8)96

=>a+b+c+8 là số chính phương(ĐPCM)

4 tháng 9 2016

 a=11...1:2n số 1 nên a=(10^2n - 1)/9 
b=11...1:n+1 số 1 nên b=[10^(n+1) - 1]/9 
c=66...6:n số 6 nên c=6*(10^n -1)/9 
a+b+c+8=(10^2n - 1)/9 + [10^(n+1) - 1]/9 + 6*(10^n -1)/9 +72/9 
=(10^2n - 1 + 10*10n -1 +6*10^n - 6 + 72)/9 
=[ (10^n)^2 + 2*10^n(5+3) +64]/9 
=[ (10^n)^2 + 2*8*10^n + 8^2]/9 
= (10^n + 8 )^2/9 
= [(10^n + 8 )/3]^2 
vì 10^n +8=100...0 +8:tổng các chữ số chia hết cho 3 nên (10^n + 8 )/3 là 1 số nguyên =>[(10^n + 8 )/3]^2 là số chính phương

26 tháng 7 2017

K MIK NHA BẠN

a=1.....1(2n số 1)=1....1(n số 1). +1...1(n số 1)
b=1...1(n+1 số 1)=1...1(n số 1).10+1
c=6...6(n số 6)=6.1...1(n số1)
Đặt m=1...1(n số 1)   =9m+1
a+b+c+8=m.(9m+2)+10m+1+6m+8=9m^2+18m+9=(3m+3)^2 là số chính phương

29 tháng 6 2015

Đặ 111...11(n CS 1)=a=>10n=9a+1

a=111...11(2n CS1)=111...1(n CS 1)111...11(n CS1)=111...1(n CS1)000...00(nCS0)+111...11(n CS1)=a.(9a+1)+a

b=111...11(n+1CS1)=111..11(nCS1).10+1=10a+1

c=666...66(nCS6)=6.111...11(nCS1)=6a

=> a+b+c+8=9a2+18a+9=(3a+3)2

P/s: Khó trình bày quá

26 tháng 7 2017

Đặ 111...11(n CS 1)=a=>10n=9a+1

a=111...11(2n CS1)=111...1(n CS 1)111...11(n CS1)=111...1(n CS1)000...00(nCS0)+111...11(n CS1)=a.(9a+1)+a

b=111...11(n+1CS1)=111..11(nCS1).10+1=10a+1

c=666...66(nCS6)=6.111...11(nCS1)=6a

=> a+b+c+8=9a2+18a+9=(3a+3)2

13 tháng 7 2016

\(A=11...1\left(2n\right);B=11...1\left(n+1\right);C=66...6\left(n\right)\)

\(\Rightarrow A+B+C+8=11...1\left(2n\right)+11...1\left(n+1\right)+66...6\left(n\right)+8\)

\(=11...1\left(n\right).10^n+11...1\left(n\right)+11...1\left(n\right).10+1+6.11...1\left(n\right)+8\)

\(=11...1\left(n\right).10^n+17.11...1\left(n\right)+9\)

Đặt\(11...1\left(n\right)=a\)

\(\Rightarrow10^n=9a+1\)

\(\Rightarrow A+B+C+8=a\left(9a+1\right)+17a+9\)

\(=9a^2+18a+9a=\left(3a+3\right)^2\)

Thay \(a=11...1\left(n\right)\Rightarrow A+B+C+8=\left(3.11...1\left(n\right)+3\right)^2\)

Chú thích: n;n+1;2n là số chữ số

DD
28 tháng 7 2021

Đặt \(d=11...1\)(\(n\)chữ số \(1\)) suy ra \(10^n=9d+1\).

\(a=10^n.d+d=\left(9d+1\right).d+d=9d^2+2d\)

\(b=10d+1\)

\(c=6d\)

\(a+b+c+8=9d^2+2d+10d+1+6d+8\)

\(=9d^2+18d+9=\left(3d+3\right)^2\)là số chính phương. 

25 tháng 6 2015

a=1.....1(2n số 1)=1....1(n số 1).10n +1...1(n số 1)
b=1...1(n+1 số 1)=1...1(n số 1).10+1
c=6...6(n số 6)=6.1...1(n số1)
Đặt m=1...1(n số 1) => 10n  =9m+1
a+b+c+8=m.(9m+2)+10m+1+6m+8=9m^2+18m+9=(3m+3)^2 là số chính phương