Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nguyễn Ngô Gia Hân:
1.Tìm x
\(^{\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=\frac{29}{30}}\)
\(^{\Leftrightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}+\frac{1}{\left(x+1\right)}=\frac{29}{30}}\)
\(^{\Leftrightarrow\frac{1}{1}+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+...+\left(\frac{1}{x}-\frac{1}{x}\right)-\frac{1}{x+1}=\frac{29}{30}}\)
\(^{\Leftrightarrow\frac{1}{1}+0+0+0+...+0-\frac{1}{x+1}=\frac{29}{30}}\)
\(^{\Leftrightarrow\frac{1}{1}-\frac{1}{x+1}=\frac{29}{30}}\)
\(^{\Leftrightarrow\frac{1}{x+1}=\frac{1}{1}-\frac{29}{30}}\)
\(^{\Leftrightarrow\frac{1}{x+1}=\frac{1}{30}}\)
\(^{\Leftrightarrow x+1=30}\)
\(^{\Leftrightarrow x=29}\)
Vậy x =29
Làm đc mỗi bài này thoi, tham khảo nha ~~
Bài 1 có rồi mk làm mấy bài sau nhé
Bài 2 :
Ta có :
\(3a=4b\)\(\Rightarrow\)\(\frac{b}{3}=\frac{a}{4}\) và \(b-a=-10\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{b}{3}=\frac{a}{4}=\frac{b-a}{3-4}=\frac{-10}{-1}=10\)
Do đó :
\(\frac{a}{4}=10\)\(\Rightarrow\)\(a=10.4=40\)
\(\frac{b}{3}=10\)\(\Rightarrow\)\(b=10.3=30\)
Vậy \(a=40\) và \(b=30\)
Chúc bạn học tốt ~
a+5b chia hết 7 thì a và b chia hết cho 7
vậy 10a +b chia hết 7
Ta có :
\(a+5b⋮7\)
\(\Leftrightarrow21a-a+5b-7b⋮7\)
\(\Leftrightarrow20a-2b⋮7\)
\(\Leftrightarrow2\left(10a-b\right)⋮7\)
Mà ( 2 ; 7 ) = 1
=> 10a - b chia hết cho 7
** Sai đề nhé bạn
Ta xét hiệu:
(10a + 50b) - (10a + b) = 10a + 50b - 10a - b
= 49b \(⋮\) 7
\(\Rightarrow\) (10a + 50b) - (10a + b) (1)
Theo bài ra: a + 5b \(⋮\) 7
\(\Rightarrow\) 10(a + 5b) \(⋮\) 7 (2)
Từ (1) và (2), suy ra:
10a + b \(⋮\) 7
Vậy nếu a + 5b chia hết cho 7 thì 10a + b cũng chia hết cho 7
Ta co : \(a^2+b^2⋮3\)\(\Leftrightarrow\hept{\begin{cases}a^2⋮3\\b^2⋮3\end{cases}}\)
De \(a^2⋮3;b^2⋮3\)thi \(a,b⋮3\)
\(\Rightarrow dpcm\)
Vì a2 là số chính phương =>a2 chia cho 3 dư 0 hoặc 1
Tương tự:b2 là số chính phương =>b2 chia cho 3 dư 0 hoặc 1
=>a2+b2 chia cho 3 dư 0,1 hoặc 2
Mà a2+b2 chia hết cho 3
=>a2+b2 chia cho 3 dư 0
=>a2 và b2 chia hết cho 3
Vì a2 chia hết cho 3,3 là số nguyên tố =>a chia hết cho 3
Tương tự:b2 chia hết cho 3,3 là số nguyên tố =>b chia hết cho 3
Vậy nếu (a2+b2) chia hết cho 3 thì a và b cùng chia hết cho 3
Quỳnh Anh ơi,a2+b2 chia hết cho 3 thì a2 và b2 cũng có thể chia không chia hết cho 3 mà,làm sao suy ra a2 và b2 phải chia hết cho 3 vậy ?