K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2020

Phương Khánh Thực ra là ban đầu mình tính dùng Bunyakovski thẳng luôn nhưng thấy bậc khá cao mà không biết BĐT đó đúng hay sai nên mình đảo a, b, c xuống mẫu để dùng BĐT Bunyakovski thì bậc sẽ thấp hơn.

Và không ngờ sự vô tình đó giúp mình gặp may mắn: Đại lượng abc ở \(\frac{abc\left(a+b+c\right)^3}{ab+bc+ca}\) có thể giản ước cho đại lượng abc ở VP. Bậc của BĐT được hạ thấp và mình cứ thế mà chém:))

22 tháng 4 2020

Áp dụng BĐT Bunyakovski\(,\) ta có: \(\left(a^2b+b^2c+c^2a\right)\left(\frac{1}{b}+\frac{1}{c}+\frac{1}{a}\right)\ge\left(a+b+c\right)^2\)

Do đó: \(VT\ge\frac{\left(a+b+c\right)^3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{abc\left(a+b+c\right)^3}{ab+bc+ca}\ge9abc\)

Bất đẳng thức cuối tương đương: \(\left(a+b+c\right)^3\ge9\left(ab+bc+ca\right)\) \((\ast)\)

Có: \(3=a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\)

\(\therefore\left(ab+bc+ca\right)=\frac{\left(a+b+c\right)^2-3}{2}\)

\((\ast)\) \(\Leftrightarrow\left(a+b+c\right)^3\ge\frac{9}{2}\)\(\Big[(a+b+c)^2-3\Big] \)

\(\Leftrightarrow\frac{1}{2}\left(2a+2b+2c+3\right)\left(a+b+c-3\right)^2\ge0\)

Bất đẳng thức cuối hiển nhiên.

Đẳng thức xảy ra khi \(a=b=c=1\). Done.

AH
Akai Haruma
Giáo viên
26 tháng 2 2022

Lời giải:
Do $a,b,c\in [0;1]$ nên:

$a^2(1-b)\leq 0$

$b^2(1-c)\leq 0$

$c^2(1-a)\leq 0$

Cộng theo vế suy ra: $a^2+b^2+c^2\leq a^2b+b^2c+c^2a$ 

Ta có đpcm.

27 tháng 2 2022

sao lại nhỏ hơn 0 vậy ạ

 

NV
8 tháng 5 2023

Trước hết, với \(a+b+c=1\) ta có:

\(a^2+b^2+c^2=\left(a^2+b^2+c^2\right)\left(a+b+c\right)\)

\(=\left(a^3+ab^2\right)+\left(b^3+bc^2\right)+\left(c^3+ca^2\right)+a^2b+b^2c+c^2a\)

\(\ge2a^2b+2b^2c+2c^2a+a^2b+b^2c+c^2a\)

Hay \(a^2+b^2+c^2\ge3\left(a^2b+b^2c+c^2a\right)\)

Từ đó:

\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}=\dfrac{a^4}{a^2b}+\dfrac{b^4}{b^2c}+\dfrac{c^4}{c^2a}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\)

\(\ge\dfrac{3\left(a^2b+b^2c+c^2a\right)\left(a^2+b^2+c^2\right)}{a^2b+b^2c+c^2a}=3\left(a^2+b^2+c^2\right)\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)

8 tháng 5 2023

em cảm ơn thầy nhiều ạ !

 

 

NV
22 tháng 2 2021

Đặt \(P=a^2+b^2+c^2+ab+bc+ca\)

\(P=\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{2}\left(a^2+b^2+c^2\right)\)

\(P\ge\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{6}\left(a+b+c\right)^2=6\)

Dấu "=" xảy ra khi \(a=b=c=1\)

6 tháng 8 2023

Có : a + b + c = 0

=> (a + b)5 = (-c)5

      a5 + 5a4b + 10a3b+ 10a2b3 + 5ab4 + b5 = -c5

      a5 + b5 + c5 = -5a4b - 10a3b2 - 10a2b3 - 5ab4

       a5 + b5 + c5 = -5ab(a3 + 2a2b + 2ab2 + b3)

      a5 + b5 + c= -5ab[(a3 + b3) + (2a2b + 2ab2)]

      a5 + b5 + c5 = -5ab[(a + b)(a2 - ab + b2) + 2ab(a + b)]

      a5 + b5 + c5 = -5ab(a + b)(a2 + b2 + ab)  

      a5 + b5 + c5 = 5abc(a2 + b2 + ab)   (do a+b+c=0=> a+b=-c)

      2(a5 + b5 + c5) = 5abc(2a2 + 2b2 + 2ab)

      2(a5 + b5 + c5) = 5abc[a2 + b2 +(a2 + 2ab + b2)]

      2(a5 + b5 + c5) = 5abc[a2 + b2 + (a + b)2]

      2(a5 + b5 + c5) = 5abc(a2 + b2 + c2)    (do a+b=-c=> (a +b )2 = c2

    \(\Leftrightarrow\) \(a^5+b^5+c^5=\dfrac{5}{2}abc\left(a^2+b^2+c^2\right)\)

Vậy...

6 tháng 8 2020

Áp dụng bất đẳng thức Cosi, ta có:

\(\left(a^2+b+c\right)\left(1+b+c\right)\ge\left(a+b+c\right)^2\)Do đó, để chứng minh bất đẳng thức đã cho, ta chỉ cần chứng minh rằng:

\(\frac{a\sqrt{1+b+c}+b\sqrt{1+c+a}+c\sqrt{1+a+b}}{a+b+c}\le\sqrt{3}\)

Áp dụng bất đẳng thức Côsi lần thứ hai ta nhận được:

\(VT=\frac{\sqrt{a}\sqrt{a\left(1+b+c\right)}+\sqrt{b}\sqrt{b\left(1+c+a\right)}+\sqrt{c}\sqrt{c\left(1+a+b\right)}}{a+b+c}\)

\(\le\frac{\sqrt{\left(a+b+c\right)\left[a\left(1+b+c\right)+b\left(1+c+a\right)+c\left(1+a+b\right)\right]}}{a+b+c}\)

\(=\sqrt{1+\frac{2\left(ab+bc+ca\right)}{a+b+c}}\)

\(\le\sqrt{1+\frac{2\left(a+b+c\right)}{3}}\)

\(\le\sqrt{1+\frac{2\sqrt{3\left(a^2+b^2+c^2\right)}}{3}}=\sqrt{3}\left(đpcm\right)\)

Đẳng thức xảy ra khi và chỉ khi a = b = c = 1.

6 tháng 8 2020

sửa đề thành \(a^2+b^2+c^2=3\) nhé