K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(S=\frac{105}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+105}\)

\(S=\frac{abc}{abc+ab+a}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\)

\(S=\frac{abc}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{a}{ab+a+abc}\)

\(S=\frac{bc+b+1}{bc+b+1}=1\)

19 tháng 1 2019

1 nha bn

21 tháng 5 2015

vì abc=105 nên thay 105 bằng abc ta được:

\(s=\frac{abc}{a\left(bc+b+1\right)}\)+\(\frac{b}{bc+b+1}\)+\(\frac{a}{ab+a+abc}\)

\(s=\frac{bc}{bc+b+1}\)+\(\frac{b}{bc+b+1}\)+\(\frac{1}{b+1+bc}\)=\(\frac{bc+b+1}{bc+b+1}\)=1

Cho mình 1 l i k e nha..............

13 tháng 1 2018

đúng rồi đó mình chắc chắn 100

10 tháng 4 2017

Vì abc = 105 nên thay 105 bằng abc, ta được:

\(S=\dfrac{abc}{a\left(bc+b+1\right)}+\dfrac{b}{bc+b+1}+\dfrac{a}{ab+a+abc}\)

\(S=\dfrac{bc}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{1}{b+1+c}=\dfrac{bc+b+1}{bc+b+1}=1\)

2 tháng 3 2019

Vì abc=105 nên thay 105 bằng abc ta được:

\(S=\dfrac{abc}{a\left(bc+b+1\right)}\)+\(\dfrac{b}{bc+b+1}\)+\(\dfrac{a}{ab+a+abc}\)

\(S=\dfrac{bc}{bc+b+1}\)+\(\dfrac{b}{bc+b+1}\)+\(\dfrac{1}{b+1+bc}\)=\(\dfrac{bc+b+1}{bc+b+1}\)=1