K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2021

Áp dụng bất đẳng thức Cô-si vào biểu thức \(1+\dfrac{a}{b}\), ta có:

\(1+\dfrac{a}{b}\ge2\sqrt{\dfrac{a}{b}}\)    (1)

Áp dụng bất đẳng thức Cô-si vào biểu thức \(1+\dfrac{b}{c}\), ta có:

\(1+\dfrac{b}{c}\ge2\sqrt{\dfrac{b}{c}}\)    (2)

Áp dụng bất đẳng thức Cô-si vào biểu thức \(1+\dfrac{c}{a}\), ta có:

\(1+\dfrac{c}{a}\ge2\sqrt{\dfrac{c}{a}}\)    (3)

Từ (1), (2) và (3)

\(\Rightarrow\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\ge2\sqrt{\dfrac{a}{b}}.2\sqrt{\dfrac{b}{c}}.2\sqrt{\dfrac{c}{a}}\)\(\Rightarrow\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\ge8\) (vì \(\sqrt{\dfrac{a}{b}}.\sqrt{\dfrac{b}{c}}.\sqrt{\dfrac{c}{a}}=1\))

6 tháng 5 2021

Dấu "=" xảy ra khi a = b = c. Khi đó tam giác đã cho là tam giác đều

29 tháng 4 2018

C/m BĐT phụ:   \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)  (*)      (x,y dương)

Ta có:   \(\left(x-y\right)^2\ge0\)       

\(\Leftrightarrow\)\(x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\)\(x^2+y^2\ge2xy\)

\(\Leftrightarrow\)\(x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow\)\(\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow\)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\)\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)   (BĐT đã đc chứng minh)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(x=y\)

ÁP dụng BĐT (*) ta có:

\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{p-a+p-b}=\frac{4}{2p-\left(a+b\right)}=\frac{4}{c}\)  (1)

\(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{p-b+p-c}=\frac{4}{2p-\left(b+c\right)}=\frac{4}{a}\)  (2)

\(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{p-c+p-a}=\frac{4}{2p-\left(c+a\right)}=\frac{4}{b}\) (3)

Lấy (1); (2); (3) cộng theo vế ta được:

          \(2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Leftrightarrow\)\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)  (đpcm)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(a=b=c\)

Khi đó  \(\Delta ABC\)là tam giác đều

14 tháng 4 2018

Do p là nửa chu vi tam giác nên \(2p=a+b+c\)

Ta có bổ đề sau: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2+2xy+y^2\ge4xy\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)

Áp dụng vào bài toán: 

\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{p-a+p-b}=\frac{4}{2p-a-b}=\frac{4}{c}\)

Tương tự: \(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{a},\)\(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{b}\)

\(\Rightarrow2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge\frac{4}{a}+\frac{4}{b}+\frac{4}{c}=4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Leftrightarrow\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)(đpcm)

Dấu "=" xảy ra khi a=b=c.

23 tháng 2 2015

\(\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)=8\Leftrightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)

Ta có (a +b)2 >=4ab với mọi a,b>0. Dấu = xảy ra <=> a = b

(b+c)2 >=4bc, với mọi b,c >0. Dấu = xảy ra <=> b = c

(c+a)2 >=4ca, với mọi a,b>0. Dấu = xảy ra <=> c = a

=> (a+b)2(b+c)2(c+a)2 >=64a2b2c2 (a,b,c >0)

=> (a+b)(b+c)(c+a) >=8abc => (a+b)(b+c)(c+a)/abc >=8

Dấu = xảy ra <=> a = b = c <=> Tam giác đều

16 tháng 10 2017

Áp dụng bất đẳng thức Cô - si cho 3 số dương a, b, c

\(a+b\ge2\sqrt{ab}\)    ;  \(b+c\ge2\sqrt{bc}\);   \(c+a\ge\sqrt{ca}\)

Nhân các vế của BĐT \(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)

Dấu " = " xảy ra khi a = b = c => tam giác đó đều

10 tháng 8 2015

Do a,b,c là 3 cạnh là 3 cạnh tam giác =>a,b,c>0

Áp dụng BĐT co si cho 2 số dương ta có:

a+b\(\ge2\sqrt{ab}\)

b+c\(\ge2\sqrt{bc}\)

a+c\(\ge2\sqrt{ac}\)

=>(a+b)(b+c)(c+a)>\(2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=8\sqrt{a^2b^2c^2}=8abc\)

Dấu bằng xảy ra <=>a=b b=c c=a=>a=b=c

Mà theo đề bài (a+b)(b+c)(c+a)=8abc

=>a=b=c=>tam giác đó là tam giác đều

6 tháng 1 2017

co cach khac khong , minh chua hoc bat dang thuc cosi

5 tháng 11 2019

\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)

\(\Leftrightarrow\frac{\left(a+b\right)\left(c+b\right)\left(a+c\right)}{abc}=8\)

\(\Leftrightarrow\frac{\left(a+b\right)^2\left(c+b\right)^2\left(a+c\right)^2}{a^2b^2c^2}=64\)

Ta có

\(\left(a+b\right)^2\ge4ab;\left(c+b\right)^2\ge4cb;\left(a+c\right)^2\ge4ac\)

\(\frac{\left(a+b\right)^2\left(c+b\right)^2\left(a+c\right)^2}{a^2b^2c^2}\ge64\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)=> Đó là tam giác đều

7 tháng 11 2019

Ta có: \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)

         \(\Rightarrow\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{c}=8\)

        \(\Rightarrow\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=8\)

        \(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=8abc\)

        \(\Rightarrow a^2b+a^2c+b^2c+ab^2+ac^2+bc^2+2abc=8abc\)

        \(\Rightarrow a^2b+a^2c+b^2c+ab^2+ac^2+bc^2-6abc=0\)

        \(\Rightarrow\left(ab^2-2abc+ac^2\right)+\left(a^2b-2abc+bc^2\right)+\left(a^2c-2abc+b^2c\right)=0\)

        \(\Rightarrow a\left(b^2-2bc+c^2\right)+b\left(a^2-2ac+c^2\right)+c\left(a^2-2ab+b^2\right)=0\)

        \(\Rightarrow a\left(b-c\right)^2+b\left(a-c\right)^2+c\left(a-b\right)^2=0\)(1)

Vì a, b, c là độ dài các cạnh của tam giác nên a, b, c > 0 (2)

Do đó \(\Rightarrow\hept{\begin{cases}a\left(b-c\right)^2\ge0\\b\left(a-c\right)^2\ge0\\c\left(a-b\right)^2\ge0\end{cases}}\)(3)

Từ (1), (2), (3) \(\Rightarrow\left(b-c\right)^2=\left(a-c\right)^2=\left(a-b\right)^2=0\)

                        \(\Rightarrow\left(b-c\right)=\left(a-c\right)=\left(a-b\right)=0\)

                        \(\Rightarrow a=b=c\)

Vậy a, b, c là độ dài ba cạnh của một tam giác đều

17 tháng 8 2016

Ta có : a+b > c , b+c > a , c+a > b

Xét : \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+b+c}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)

Tương tự , ta cũng có : \(\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c};\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c}\)

Vậy ta có đpcm

Chú ý : a,b,c là độ dài ba cạnh của một tam giác chứ không phải a+b,b+c,c+a nhé :)

5 tháng 2 2021

tham khảo:        Câu hỏi của Nguyễn Thùy Trang     

https://olm.vn/hoi-dap/detail/240354680477.html

7 tháng 5 2016

Vì a,b,c là độ dài 2 cạnh của tam giác .Áp dụng BĐT Cô si ta có:

a+b>=2x căn(ab)

b+c>= 2x căn(bc)

c+a>= 2x căn(ac)

Nhân vế theo vế ta được (a+b)(b+c)(c+a) >=8abc

Dấu = xảy ra <=> a=b;b=c;c=a => a=b=c => tam giác đó là tam giác đều