K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2017

vì \(c\le a\)nên \(\frac{1}{\left(c+1\right)^2}\ge\frac{1}{\left(a+1\right)^2}\)

\(VT\ge\frac{2}{\left(a+1\right)^2}+\frac{2}{\left(b+1\right)^2}+\frac{2}{\left(c+1\right)^2}\)

Áp dụng BĐT AM-GM: \(\frac{1}{\left(a+1\right)^2}+\frac{1}{\left(b+1\right)^2}+\frac{1}{\left(c+1\right)^2}\ge\frac{1}{\left(a+1\right)\left(b+1\right)}+\frac{1}{\left(b+1\right)\left(c+1\right)}+\frac{1}{\left(c+1\right)\left(a+1\right)}\)

\(=\frac{a+b+c+3}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}=\frac{a+b+c+3}{abc+a+b+c+4}\)(*)

Từ giả thiết: ab+bc+ca=3.Áp dụng BĐT AM-GM:\(3=ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Leftrightarrow abc\le1\)

và có BĐT \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)=9\)\(\Leftrightarrow a+b+c\ge3\)

\(\Rightarrow a+b+c\ge3\ge3abc\)

từ (*): \(\frac{a+b+c+3}{abc+a+b+c+4}\ge\frac{a+b+c+3}{\frac{a+b+c}{3}+a+b+c+4}=\frac{3\left(a+b+c+3\right)}{4\left(a+b+c\right)+12}=\frac{3}{4}\)

do đó \(VT\ge2.\frac{3}{4}=\frac{3}{2}\)

Dấu = xảy ra khi a=b=c=1

nguồn: Hữu Đạt 

15 tháng 6 2017

thử đổi biến từ (a,b,c)->(y/x,z/y,x/z) 

25 tháng 10 2020

Bài 4: Áp dụng bất đẳng thức AM - GM, ta có: \(P=\text{​​}\Sigma_{cyc}a\sqrt{b^3+1}=\Sigma_{cyc}a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\Sigma_{cyc}a.\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}=\Sigma_{cyc}\frac{ab^2+2a}{2}=\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)Giả sử b là số nằm giữa a và c thì \(\left(b-a\right)\left(b-c\right)\le0\Rightarrow b^2+ac\le ab+bc\)\(\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2=b\left(a+c\right)^2=b\left(3-b\right)^2\)

Ta sẽ chứng minh: \(b\left(3-b\right)^2\le4\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(b-4\right)\left(b-1\right)^2\le0\)(đúng với mọi \(b\in[0;3]\))

Từ đó suy ra \(\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\le\frac{1}{2}.4+3=5\)

Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị

26 tháng 10 2020

Bài 1: Đặt \(a=xc,b=yc\left(x,y>0\right)\)thì điều kiện giả thiết trở thành \(\left(x+1\right)\left(y+1\right)=4\)

Khi đó  \(P=\frac{x}{y+3}+\frac{y}{x+3}+\frac{xy}{x+y}=\frac{x^2+y^2+3\left(x+y\right)}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)\(=\frac{\left(x+y\right)^2+3\left(x+y\right)-2xy}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)

Có: \(\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-\left(x+y\right)\)

Đặt \(t=x+y\left(0< t< 3\right)\Rightarrow xy=3-t\le\frac{\left(x+y\right)^2}{4}=\frac{t^2}{4}\Rightarrow t\ge2\)(do t > 0)

Lúc đó \(P=\frac{t^2+3t-2\left(3-t\right)}{3-t+3t+9}+\frac{3-t}{t}=\frac{t}{2}+\frac{3}{t}-\frac{3}{2}\ge2\sqrt{\frac{t}{2}.\frac{3}{t}}-\frac{3}{2}=\sqrt{6}-\frac{3}{2}\)với \(2\le t< 3\)

Vậy \(MinP=\sqrt{6}-\frac{3}{2}\)đạt được khi \(t=\sqrt{6}\)hay (x; y) là nghiệm của hệ \(\hept{\begin{cases}x+y=\sqrt{6}\\xy=3-\sqrt{6}\end{cases}}\)

Ta lại có \(P=\frac{t^2-3t+6}{2t}=\frac{\left(t-2\right)\left(t-3\right)}{2t}+1\le1\)(do \(2\le t< 3\))

Vậy \(MaxP=1\)đạt được khi t = 2 hay x = y = 1

20 tháng 7 2017

thỏa cái j sửa đi

1 tháng 5 2016

Đặt \(\frac{1}{a}=x>0;\frac{1}{b}=y>0;\frac{1}{c}=z>0\)

Từ giả thiết ta có: \(7\left(x^2+y^2+z^2\right)=6\left(xy+yz+zx\right)+2015\le6\left(x^2+y^2+z^2\right)+2015\)

\(\Leftrightarrow x^2+y^2+z^2\le2015\)

Ta có: \(\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}=\frac{1}{\sqrt{\left(4a^2+b^2\right)+\left(2a^2+2b^2\right)}}\le\frac{1}{\sqrt{4a^2+b^2+4ab}}=\frac{1}{2a+b}=\frac{1}{a+a+b}\le\frac{1}{9}\left(\frac{2}{a}+\frac{1}{b}\right)=\frac{1}{9}\left(2x+y\right)\)

Tương tự thì: \(\frac{1}{\sqrt{3\left(2b^2+c^2\right)}}\le\frac{1}{9}\left(2y+z\right)\)  và \(\frac{1}{\sqrt{3\left(2c^2+a^2\right)}}\le\frac{1}{9}\left(2z+x\right)\)

Cộng từng vế 3 BĐT trên ta có: \(\frac{1}{\sqrt{3\left(2a^2+b^2\right)}}+\frac{1}{\sqrt{3\left(2b^2+c^2\right)}}+\frac{1}{\sqrt{3\left(2c^2+a^2\right)}}\le\frac{x+y+z}{3}\le\frac{\sqrt{3\left(x^2+y^2+z^2\right)}}{3}\le\sqrt{\frac{2015}{3}}\)

Vậy max \(P=\sqrt{\frac{2015}{3}}\)  , đạt được khi \(a=b=c=\sqrt{\frac{3}{2015}}\)

22 tháng 9 2019

Áp dụng BĐT AM-GM (Cô si): \(A\ge3\sqrt[3]{\frac{1}{abc\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\)

\(=3\sqrt[3]{\frac{1}{a\left(b+c\right).b\left(c+a\right).c\left(a+b\right)}}=\frac{3}{\sqrt[3]{\left(ab+ca\right)\left(bc+ab\right)\left(ca+bc\right)}}\)

\(\ge\frac{9}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b = c = 1

P/s: Check giúp em xem có ngược dấu không:v

22 tháng 9 2019

Cach khac 

Dat \(\left(ab;bc;ca\right)\rightarrow\left(x;y;z\right)\)

\(\Rightarrow\hept{\begin{cases}x+y+z=3\\x^2+y^2+z^2\ge3\\xyz\le1\end{cases}}\)

Ta co:

\(A=\frac{1}{ab+b^2}+\frac{1}{bc+c^2}+\frac{1}{ca+a^2}\)

\(=\frac{1}{x+\frac{xy}{z}}+\frac{1}{y+\frac{yz}{x}}+\frac{1}{z+\frac{zx}{y}}\ge\frac{9}{3+xyz\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)}\ge\frac{9}{3+3}=\frac{3}{2}\)

Dau '=' xay ra khi \(a=b=c=1\)

Vay \(A_{min}=\frac{3}{2}\)khi \(a=b=c=1\)

20 tháng 5 2020

Dat \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x,y,z\right)\)

thi \(P= \Sigma \frac{z^2}{x+y} \geq \frac{x+y+z}{2} \) (1)

Mat khac co \(x+y+z=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=3\) (2)

Tu (1) va (2) suy ra \(P\ge\frac{3}{2}\).Dau = xay ra khi \(a=b=c=1\)

25 tháng 4 2020

Xét biểu thức \(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\)

\(=\frac{\left(a+2\right)\left(b+2\right)+\left(b+2\right)\left(c+2\right)+\left(c+2\right)\left(a+2\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)

\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{abc+2\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\)

\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{\left(abc+ab+bc+ca\right)+\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\)

\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{4+\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\)(Do \(ab+bc+ca+abc=4\)theo giả thiết)

\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}=1\)(***)

Với x,y dương ta có 2 bất đẳng thức phụ sau:

\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)(*)

\(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)(**)

Áp dụng (*) và (**), ta có:

\(\frac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le\frac{1}{a+b+4}=\frac{1}{\left(a+2\right)+\left(b+2\right)}\)

\(\le\frac{1}{4}\left(\frac{1}{a+2}+\frac{1}{b+2}\right)\)(1)

Tương tự ta có: \(\frac{1}{\sqrt{2\left(b^2+c^2\right)}+4}\le\frac{1}{4}\left(\frac{1}{b+2}+\frac{1}{c+2}\right)\)(2)

\(\frac{1}{\sqrt{2\left(c^2+a^2\right)}+4}\le\frac{1}{4}\left(\frac{1}{c+2}+\frac{1}{a+2}\right)\)(3)

Cộng từng vế của các bất đẳng thức (1), (2), (3), ta được:

\(P\le\frac{1}{2}\left(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\right)=\frac{1}{2}\)(theo (***))

Đẳng thức xảy ra khi \(a=b=c\)

25 tháng 4 2020

Bạn bổ sung cho mình dòng cuối là a = b = c = 1 nhé!