Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT cauchy-schwarz:
\(VT=\sum\dfrac{a^4}{b^3\left(c+2a\right)}=\sum\dfrac{\dfrac{a^4}{b^2}}{b\left(c+2a\right)}\ge\dfrac{\left(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\right)^2}{3\left(ab+bc+ca\right)}\)
Mà \(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)
\(\Rightarrow VT\ge\dfrac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)
Dấu = xảy ra khi a=b=c
Câu a)
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\geq \frac{9}{a+2b}\) (1)
\(\frac{1}{b}+\frac{1}{c}+\frac{1}{c}\geq \frac{9}{b+2c}\)(2)
\(\frac{1}{c}+\frac{1}{a}+\frac{1}{a}\geq \frac{9}{c+2a}\) (3)
Lấy \((1)+2.(2)+3.(3)\) ta có:
\(\Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{2}{b}+\frac{2}{c}+\frac{2}{c}+\frac{3}{c}+\frac{3}{a}+\frac{3}{a}\geq 9\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)
\(\Leftrightarrow \frac{7}{a}+\frac{4}{b}+\frac{7}{c}\geq 9\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)
Ta có đpcm
Dấu bằng xảy ra khi \(a=b=c\)
Câu b)
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{a}+\frac{4}{b}\geq \frac{(1+2)^2}{a+b}=\frac{9}{a+b}\)
\(\Rightarrow \frac{1}{3a}+\frac{4}{3b}\geq \frac{3}{a+b}(1)\)
\(\frac{1}{3b}+\frac{1}{2c}+\frac{1}{2c}\geq \frac{9}{3b+4c}\)
\(\Rightarrow \frac{2}{3b}+\frac{2}{c}\geq \frac{18}{3b+4c}\) (2)
\(\frac{1}{c}+\frac{1}{3a}+\frac{1}{3a}\geq \frac{9}{c+6a}\) (3)
Từ (1); (2); (3) cộng theo vế:
\(\Rightarrow \frac{1}{a}+\frac{2}{b}+\frac{3}{c}\geq \frac{3}{a+b}+\frac{18}{3b+4c}+\frac{9}{c+6a}\)
(đpcm)
Dấu bằng xảy ra khi \(a=\frac{b}{2}=\frac{c}{3}\)
Câu c)
BĐT cần chứng minh tương đương với:
\(\frac{b+c+a}{a}+\frac{2a+c}{b}+\frac{4(a+b)}{a+c}\geq 10\) (*)
Áp dụng BĐT AM-GM:
\(\text{VT}=\frac{b}{a}+\frac{c+a}{2a}+\frac{c+a}{2a}+\frac{a}{b}+\frac{a+c}{2b}+\frac{a+c}{2b}+\frac{a+b}{a+c}+\frac{a+b}{a+c}+\frac{a+b}{a+c}+\frac{a+b}{a+c}\)
\(\geq 10\sqrt[10]{\frac{ba(c+a)^4(a+b)^4}{16a^3b^3(a+c)^4}}=10\sqrt[10]{\frac{(a+b)^4}{16a^2b^2}}\)
Theo AM-GM: \((a+b)^2\geq 4ab\Rightarrow (a+b)^4\geq 16a^2b^2\)
\(\Rightarrow \text{VT}\geq 10\sqrt[10]{\frac{(a+b)^4}{16a^2b^2}}\geq 10\)
Vậy (*) được cm. Ta có đpcm. Dấu bằng xảy ra khi a=b=c
Từ \(a^2b^2+b^2c^2+c^2a^2\ge a^2b^2c^2\)\(\Rightarrow\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=1\)
bài này tui làm rồi ở đây
Đặt \(a\left(1-b\right)=x;b\left(1-c\right)=y;c\left(1-a\right)=x\)
\(\Rightarrow1-\left(a+b+c\right)+ab+bc+ca=1-a\left(1-b\right)-b\left(1-c\right)-c\left(1-a\right)=1-x-y-z\)
BĐT cần c/m trở thành:
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{3}{1-x-y-z}\)
\(\Leftrightarrow\left(1-x-y-z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)-3\ge0\)
\(\Leftrightarrow\dfrac{1-x-y-z}{x}+\dfrac{1-x-y-z}{y}+\dfrac{1-x-y-z}{z}-3\ge0\)
\(\Leftrightarrow\dfrac{1-y-z}{x}+\dfrac{1-z-x}{y}+\dfrac{1-x-y}{z}-6\ge0\) (1)
Lại có: \(1-y-z=1-b\left(1-c\right)-c\left(1-a\right)=1-b-c+bc+ca=\left(1-b\right)\left(1-c\right)+ca\)
Nên (1) tương đương:
\(\dfrac{\left(1-b\right)\left(1-c\right)+ca}{a\left(1-b\right)}+\dfrac{\left(1-a\right)\left(1-c\right)+ab}{b\left(1-c\right)}+\dfrac{\left(1-a\right)\left(1-b\right)+bc}{c\left(1-a\right)}-6\ge0\)
\(\Leftrightarrow\dfrac{1-c}{a}+\dfrac{c}{1-b}+\dfrac{1-a}{b}+\dfrac{a}{1-c}+\dfrac{1-b}{c}+\dfrac{b}{1-a}\ge6\)
BĐT trên hiển nhiên đúng theo AM-GM do:
\(\dfrac{1-c}{a}+\dfrac{c}{1-b}+\dfrac{1-a}{b}+\dfrac{a}{1-c}+\dfrac{1-b}{c}+\dfrac{b}{1-a}\ge6\sqrt[6]{\dfrac{abc\left(1-a\right)\left(1-b\right)\left(1-c\right)}{abc\left(1-a\right)\left(1-b\right)\left(1-c\right)}}=6\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{2}\)
Cám ơn bài giải của thầy Lâm ạ!
Và từ bài bất đăng thức này, đã được chế thành bài toán hình học trong 1 kì thi học sinh giỏi toán cấp tỉnh thầy ạ!
a) Sai với \(a=1,b=2\)
b)
Thực hiện biến đổi tương đương:
\(\frac{a}{3b}+\frac{b(a+b)}{a^2+ab+b^2}\geq 1\)
\(\Leftrightarrow \frac{a}{3b}+\frac{b(a+b)+a^2}{a^2+ab+b^2}-\frac{a^2}{a^2+ab+b^2}\geq 1\)
\(\Leftrightarrow \frac{a}{3b}-\frac{a^2}{a^2+ab+b^2}\geq 0\)
\(\Leftrightarrow \frac{1}{3b}-\frac{a}{a^2+ab+b^2}\geq 0\)
\(\Leftrightarrow \frac{a^2+ab+b^2-3ab}{3b(a^2+ab+b^2)}\geq 0\)
\(\Leftrightarrow \frac{(a-b)^2}{3b(a^2+ab+b^2)}\geq 0\) (luôn đúng)
Do đó ta có đpcm. Dấu bằng xảy ra khi $a=b$
c) BĐT sai với \(a=1,b=2\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{b+c}{4bc}+\dfrac{1}{2b}\ge3\sqrt[3]{\dfrac{b^2c\left(b+c\right)}{8a^3\left(b+c\right)b^2c}}=\dfrac{3}{2a}\\\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{c+a}{4ca}+\dfrac{1}{2c}\ge3\sqrt[3]{\dfrac{c^2a\left(c+a\right)}{8b^3\left(c+a\right)c^2a}}=\dfrac{3}{2b}\\\dfrac{a^2b}{c^3\left(a+b\right)}+\dfrac{a+b}{4ab}+\dfrac{1}{2a}\ge3\sqrt[3]{\dfrac{a^2b\left(a+b\right)}{8c^3\left(a+b\right)a^2b}}=\dfrac{3}{2c}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{1}{4c}+\dfrac{1}{4b}+\dfrac{1}{2b}\ge\dfrac{3}{2a}\\\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{1}{4a}+\dfrac{1}{4c}+\dfrac{1}{2c}\ge\dfrac{3}{2b}\\\dfrac{a^2b}{c^3\left(a+b\right)}+\dfrac{1}{4b}+\dfrac{1}{4a}+\dfrac{1}{2a}\ge\dfrac{3}{2c}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{1}{4c}+\dfrac{3}{4b}\ge\dfrac{3}{2a}\\\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{1}{4a}+\dfrac{3}{4c}\ge\dfrac{3}{2b}\\\dfrac{a^2b}{c^3\left(a+b\right)}+\dfrac{1}{4b}+\dfrac{3}{4a}\ge\dfrac{3}{2c}\end{matrix}\right.\)
\(\Rightarrow VT+\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)+\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{3}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\Rightarrow VT+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{3}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\Rightarrow VT\ge\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\Leftrightarrow\dfrac{b^2c}{a^3\left(b+c\right)}+\dfrac{c^2a}{b^3\left(c+a\right)}+\dfrac{a^2b}{c^3\left(a+b\right)}\ge\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) ( đpcm )