\(a^3+b^3+c^3=3abc\). Tính giá trị biểu thức: 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2020

Bài làm

Ta có : a3 + b3 + c3 = 3abc

<=> ( a3 + b3 ) + c3 - 3abc = 0

<=> ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0

<=> [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0

<=> ( a + b + c )[ ( a + b )2 - ( a + b )c + c2 ] - 3ab( a + b + c ) = 0

<=> ( a + b + c )( a2 + 2ab + b2 - ac - bc + c2 - 3ab ) = 0

<=> ( a + b + c )( a2 + b2 + c2 - ab - bc - ac ) = 0

<=> \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{cases}}\)

Vì a, b, c dương => a + b + c > 0 => a + b + c = 0 vô lí

Xét a2 + b2 + c2 - ab - bc - ac = 0

<=> 2( a2 + b2 + c2 - ab - bc - ac ) = 2.0

<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac = 0

<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( a2 - 2ac + c2 ) = 0

<=> ( a - b )2 + ( b - c )2 + ( a - c )2 = 0

VT ≥ 0 ∀ a,b,c . Đẳng thức xảy ra <=> \(\hept{\begin{cases}a-b=0\\b-c=0\\a-c=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\a=c\end{cases}}\Leftrightarrow a=b=c\)

=> \(P=\left(\frac{a}{b}-1\right)+\left(\frac{b}{c}-1\right)+\left(\frac{c}{a}-1\right)=\left(\frac{a}{a}-1\right)+\left(\frac{b}{b}-1\right)+\left(\frac{c}{c}-1\right)\)

\(=\left(1-1\right)+\left(1-1\right)+\left(1-1\right)\)

\(=0\)

2 tháng 11 2016

Do \(a,b,c\) là các số dương suy ra:

\(a>0;b>0;c>0\)

Suy ra: \(a+b+c>0\)

Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2-3ab\left(a+b+c\right)\right]=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Rightarrow a+b+c=0\) hoặc \(a^2+b^2+c^2-ab-bc-ca=0\)

Do \(a+b+c>0\)

Suy ra: \(a^2+b^2+c^2-ab-bc-ca=0\)

\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Suy ra: \(a-b=0;b-c=0\)\(c-a=0\)

Suy ra: \(a=b=c\)

Suy ra: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\)

Ta có: \(\left(\frac{a}{b}-1\right)+\left(\frac{b}{c}-1\right)+\left(\frac{c}{a}-1\right)=\left(1-1\right)+\left(1-1\right)+\left(1-1\right)=0\)

Vậy ...

 

 

2 tháng 11 2016

Sau khi giải bài này xong mình cảm thấy hoa mắt và chóng mặt, mong GP sẽ gấp đôi :)

7 tháng 2 2021

Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\left(a^3+b^3\right)+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left[\left(a+b\right)^3+c^3\right]-\left[3ab\left(a+b\right)+3abc\right]=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

Nếu \(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow a=b=c\)

Khi đó \(A=2^3=8\)

Nếu \(a+b+c=0\Rightarrow a+b=-c;b+c=-a;c+a=-b\)

Thay vào ta được:

\(A=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{c+a}{a}=\frac{-abc}{abc}=-1\)

Vậy A = 8 hoặc A = -1

16 tháng 7 2016

2) Ta có :  \(\left|x-1\right|+\left|1-x\right|=2\) (1)

Xét 3 trường hợp : 

1. Với \(x>1\) , phương trình (1) trở thành : \(x-1+x-1=2\Leftrightarrow2x=4\Leftrightarrow x=2\) (thoả mãn)

2. Với \(x< 1\), phương trình (1) trở thành : \(1-x+1-x=2\Leftrightarrow2x=0\Leftrightarrow x=0\)(thoả mãn)

3. Với x = 1 , phương trình vô nghiệm.

Vậy tập nghiệm của phương trình : \(S=\left\{0;2\right\}\)

16 tháng 7 2016

1) Cách 1:

Ta có ; \(A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\)

Mặt khác theo bất đẳng thức Cauchy :\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\) ;\(\frac{b}{c}+\frac{c}{b}\ge2\) ; \(\frac{c}{a}+\frac{a}{c}\ge2\)

\(\Rightarrow A\ge1+2+2+2=9\). Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{a}{b}=\frac{b}{a}\\\frac{b}{c}=\frac{c}{b}\\\frac{a}{c}=\frac{c}{a}\end{cases}}\)\(\Leftrightarrow a=b=c\)

Vậy Min A = 9 <=> a = b = c

Cách 2 : Sử dụng bđt Bunhiacopxki : \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(1+1+1\right)^2=9\)

26 tháng 2 2020

Ta có : \(a^3+b^3+c^3=3abc\)

\(\Rightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\left(1\right)\\a^2+b^2+c^2-ab-bc-ca=0\left(2\right)\end{cases}}\)

Từ (1) \(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

Khi đo s: \(P=\frac{abc}{\left(-a\right)\left(-b\right)\left(-c\right)}=-1\)

Từ (2) \(\Rightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow a=b=c\)

Khi đó : \(P=\frac{a^3}{2a\cdot2a\cdot2a}=\frac{1}{8}\)

Vậy : \(P=\frac{1}{8}\) hoặc \(P=-1\) với a,b,c thỏa mãn đề.