Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét đề bài , ta thấy :
\(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
\(\frac{b}{b+c+d}>\frac{b}{a+b+c+d}\)
\(\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)
\(\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)
Vậy , \(\frac{a}{b+c+d}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>1\)
mặt khác , ta lại có :
\(\frac{a}{b+c+d}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)
\(=\left(\frac{a}{d+b+c}+\frac{c}{c+d+a}\right)+\left(\frac{b}{b+c+d}+\frac{d}{d+a+b}\right)\)
Mà \(\frac{a}{b+c+d}+\frac{c}{c+d+a}< \frac{a}{a+c}+\frac{c}{c+a}=1\)
\(\frac{b}{b+c+d}+\frac{d}{d+a+c}< \frac{b}{b+d}+\frac{d}{d+b}=1\)
=> \(\frac{a}{b+c+d}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)
Vậy . . .
Với a,b,c,d là các số nguyên dương ta luôn có :
\(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
Tương tự : \(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\)
\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{c+b}{a+b+c+d}\)
\(\frac{d}{a+b+c+d}< \frac{d}{d+a+b}< \frac{d+c}{a+b+c+d}\)
Cộng vế với vế ta được :
\(\frac{a+b+c+d}{a+b+c+d}< S< \frac{2.\left(a+b+c+d\right)}{a+b+c+d}\rightarrow1< S< 2\)
Do đó , S không là số tự nhiên.
M = a/a+b + b/b+c + c/c+a
M > a/a+b+c + b/a+b+c + c/a+b+c
M > a+b+c/a+b+c
M > 1 (1)
Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)
M = a/a+b + b/b+c + c/c+a
M < a+c/a+b+c + b+c/a+b+c + b+c/a+b+c
M < 2.(a+b+c)/a+b+c
M < 2 (2)
Từ (1) và (2) => 1 < M < 2, không là số nguyên ( đpcm)
*Ta có :
a/a+b > a/a+b+c (1)
b/b+c > b/a+b+c (2)
c/c+a > c/a+b+c (3)
Từ (1); (2) và (3) suy ra:
a/a+b + b/b+c + c/c+a > a/a+b+c + b/a+b+c + c/a+b+c = a+b+c/a+b+c = 1 (a)
*Ta có công thức:
- Với a; b và c thuộc N* ta có thể rút ra:
a/b < a+c/b+c
Áp dụng công thức trên, ta có:
a/a+b < a+c/a+b+c (4)
b/b+c < b+a/a+b+c (5)
c/c+a < c+b/a+b+c (6)
Từ (4); (5) và (6) suy ra:
a/a+b + b/b+c + c/c+a < a+c/a+b+c + b+a/a+b+c + c+b/a+b+c = a+c+b+a+c+b/a+b+c = 2a+2b+2c/a+b+c = 2(a+b+c)/a+b+c = 2 (b)
Từ (a) và (b) suy ra:
1 < a/a+b + b/b+c + c/c+a < 2
=> 1 < M < 2
=> M không phải là số nguyên.
Vậy M không phải là số nguyên.
dưới mẫu:1997x-1997=1997x(x-1)
để a lớn nhất thì mẫu nhỏ nhất,mà x >hoặc =1(loại trg hợp x=1 đi vì mẫu =0) vậy x=2
Vậy min a =3993/1997
đpcm<=>(\(\frac{a}{b+c+d}\)-\(\frac{1}{3}\))+(\(\frac{b}{a+c+d}\)-\(\frac{1}{3}\))+(\(\frac{c}{a+b+d}\)-\(\frac{1}{3}\))+(\(\frac{d}{a+b+c}\)-\(\frac{1}{3}\))\(\ge\)0
Xét giá trị của các dấu ngoặc,dễ thấy chúng đều lớn hơn hoặc bằng 0
Vậy thì bất đẳng thức trên là đúng hay đpcm là đúng
Ta có:
\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{b}+\frac{1}{d}\right)=\frac{b+d}{2bd}\)
\(\Rightarrow2bd=c\left(b+d\right)\left(2\right)\)
Do b là TBC của a và c nên \(b=\frac{a+c}{2}\)
Thay vào (1) ta có: \(2.\frac{a+c}{2}.d=c.\left(\frac{a+c}{2}+d\right)\)
=> (a + c).d = \(\frac{c.\left(a+c+2d\right)}{2}\)
=> (a + c).2d = c.(a + c + 2d)
=> 2ad + 2cd = ac + c2 + 2cd
=> 2ad = ac + c2 = c.(a + c) = c.2b
=> ad = bc
\(\Rightarrow\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)
1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)
Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Nếu a + b + c + d = 0
=> a + b = -(c + d)
=> b + c = (-a + d)
=> c + d = -(a + b)
=> d + a = (-b + c)
Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4
Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)
Khi đó M = 1 + 1 + 1 + 1 = 4
2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)
Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)
b) 72x + 72x + 3 = 344
=> 72x + 72x.73 = 344
=> 72x.(1 + 73) = 344
=> 72x = 1
=> 72x = 70
=> 2x = 0 => x = 0
c) Ta có :
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)
=> 2x + 2 = 14 => x = 6 ;
2y - 4 = 6 => y = 5 ;
6 + 5 + z = 17 => z = 6
Vậy x = 6 ; y = 5 ; z = 6
3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau)
=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;
Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0
Vậy c = 0 hoặc b = 0
c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau)
=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)
Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)
Vậy P = 8
2. b) \(7^{2x}+7^{2x+3}=344\)
\(7^{2x}\cdot\left(1+7^3\right)=344\)
\(7^{2x}\cdot\left(1+343\right)=344\)
\(7^{2x}\cdot344=344\)
\(7^{2x}=1\)
\(7^{2x}=7^0\)
\(2x=0\)
\(x=0\)
ban vào link này nhé
https://olm.vn/hoi-dap/question/109536.html