Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Biến đổi tương đương:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Vậy BĐT được chứng minh
b/ \(VT=\frac{a-d}{b+d}+1+\frac{d-b}{b+c}+1+\frac{b-c}{a+c}+1+\frac{c-a}{a+d}+1-4\)
\(VT=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{a+c}+\frac{c+d}{a+d}-4\)
\(VT=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)
\(\Rightarrow VT\ge\left(a+b\right).\frac{4}{b+d+a+c}+\left(c+d\right).\frac{4}{b+c+a+d}-4\)
\(\Rightarrow VT\ge\frac{4}{\left(a+b+c+d\right)}\left(a+b+c+d\right)-4=4-4=0\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c=d\)
a, Có : (a-b)^2 >= 0
<=> a^2+b^2-2ab >= 0
<=> a^2+b^2 >= 2ab
<=> a^2+b^2+2ab >= 4ab
<=> (a+b)^2 >= 4ab
Vì a,b > 0 nên ta chia 2 vế bđt cho (a+b).ab ta được :
a+b/ab >= 4/a+b
<=> 1/a+1/b >= 4/a+b
=> ĐPCM
Dấu "=" xảy ra <=> a=b>0
Tk mk nha
(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)
<=>(a+b)(a-b)-(c+d)(c-d)=(a-b)(a+b)-(c-d)(c+d) ---- Đẳng thức đúng vs mọi a,b,c,d
Xem lại đề
Vì \(\frac{a+b+c+d}{ab}+\frac{a+b+c+d}{ac}+\frac{a+b+c+d}{ad}\)
\(=\frac{a+b}{ab}+\frac{c+d}{ab}+\frac{a+b}{ac}+\frac{a+b}{ad}+\frac{c+d}{ac}+\frac{c+d}{ad}\)
\(=\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ad}\right)+\left(d+c\right)\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ad}\right)\)
Áp dụng bất đẳng thức:
\(\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ad}\right)\ge18\)
\(\left(c+d\right)\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ad}\right)\ge18\)
\(\Rightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ad}\right)+\left(c+d\right)\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ad}\right)\ge36\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ad}\ge36\left(đpcm\right)\)
Ta có:\(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)
\(\ge\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{b+c+d+a}+\frac{d}{d+a+b+c}=1\)
và \(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)
\(\le\frac{a}{a+c}+\frac{b}{b+d}+\frac{c}{c+a}+\frac{d}{d+b}\)
\(=1+1=2\)
Vậy \(1\le\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\le2\)(đpcm)