K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 9 2024

Lời giải:

Hiển nhiên $A\vdots 7$ do các số hạng đều chia hết cho 7.

Lại có:

$A=(7+7^3)+(7^5+7^7)+....+(7^{1997}+7^{1999})$

$=7(1+7^2)+7^5(1+7^2)+...+7^{1997}(1+7^2)$
$=(1+7^2)(7+7^5+...+7^{1997})$
$=50(7+7^5+...+7^{1997})\vdots 5$

Vậy $A\vdots 7, A\vdots 5$. Mà $(7,5)=1$

$\Rightarrow A\vdots 35$

26 tháng 8 2017

56454

26 tháng 8 2017

=56454 nha bn

chúc các bn hok tốt

9 tháng 1 2016

A = 7 + 73 + 75 + ... + 71999 = (7 + 73) + (75 + 77) + ..... + (71997 +71999)
A = 7(1 + 72) + 75(1 + 72) + ... + 71997(1 + 72)
A = 7.50 + 75 .50 + 79.50 + ... + 71997.50
=> A Chia hết cho 5 (1) 0.5đ
A = 7 + 73 + 75 + ... + 71999 = 7.( 70 + 72 + 74 + ... + 71998)
=> A Chia hết cho 7 (2) 0.5đ
Mà ƯCLN(5,7) = 1 => A Chia hết cho 35

9 tháng 1 2016

khoooooooooooooooooooooooooooooooooooooooooooo

4 tháng 12 2015

A=1999+1999^2+...+1999^1998=1999(1+1999)+...+1999^1997(1+1999)=1999*2000+...+1999^1997*2000=(1999+...+1999^1997)*2000(chia hết cho 2000)

b tương tự, biến đổi 35=5*7, có chia hết cho 7 rồi thì chứng minh chia hết cho 5

26 tháng 8 2017

\(A=7+7^3+7^5+......+7^{1999}\)

\(A=\left(7+7^3\right)+\left(7^5+7^7\right)+....+\left(7^{1997}+7^{1999}\right)\)

\(A=\left(7+7^3\right)+7^4.\left(7+7^3\right)+......+7^{1996}.\left(7+7^3\right)\)

\(A=350+7^4.350+.......+7^{1996}.350\)

\(A=350.\left(1+7^4+......+7^{1996}\right)\)

\(Do\)\(350⋮35\Rightarrow350.\left(1+7^4+......+7^{1996}\right)⋮35\)

\(\Rightarrow A=7+7^3+.......+7^{1999}⋮35\)

27 tháng 8 2017

gọi số bị chia là a, số chia là b, gọi thương của 2 số là \frac{a}{b}

Theo đề bài, ta có:

a : b  

(a+73) : (b+4) =  dư 5

do đó
a + 73  x (b+4) + 5

a + 73 =  x b + \frac{a}{b} x 4 + 5

a + 73 - 5 = a +  

a + 68 = a +  

a - a + 68 =  

68 =  

hay  

 

 

Vậy thương của phép chia là 17

2 tháng 12 2016

Ta có:\(A=7+7^3+7^5+7^7+...+7^{1998}+7^{1999}\)

\(=\left(7+7^3\right)+\left(7^3+7^5\right)+...+\left(7^{1998}+7^{1999}\right)\)

\(=\left(7+7^3\right)+7^2.\left(7+7^3\right)+...+7^{^{1997}}.\left(7+7^3\right)\)

\(=350+7^2.350+...+7^{1997}.350\)

\(=350.\left(1+7^2+...+7^{1997}\right)\)

\(=35.10.\left(1+7^2+...+7^{1997}\right)\)

VÌ 35.10.(1+72+...+71997) CHIA HẾT CHO 35 

NÊN A CHIA HẾT CHO 35

2 tháng 12 2016

A=7 + 73 + 75 +... + 71999=(7 + 72) + (75 + 77)+...+(71997 + 71999)

A=7(1 + 72) + 75(1 + 72)+...+71997(1 + 72)

A=7 x 50 + 75 +...+ 7 =7 x 71997 x 50

=>A chia hết cho 5 (1)

A=7 + 73 + 7+....+ 71999=7 x(70 + 72 + 74  + ...71998)

=>A Chia hết cho 7(2)

Mà ƯCLN(5,7)=1=>A Chia hết cho 35

27 tháng 11 2016

Ta có :

(+) A chia hết cho 7 vì mọi số hạng của A đều chia hết cho 7 (1)

(+) \(A=7\left(1+7^2\right)+7^5\left(1+7^2\right)+....+7^{2014}\left(1+7^2\right)\)

\(\Leftrightarrow A=7.50+7^5.50+....+7^{2014}.50\)

<=> A chia hết cho 5 (2)

Mà (5;7)=1 (3)

Từ (1) ; (2) và 3

=> A chia hết cho 5.7 = 35

18 tháng 11 2015

bạn vào câu hỏi tương tự nhé !!!

18 tháng 11 2015

A = 7 + 7^3 + 7^5 + ... + 7^1999 = (7 + 7^3) + (7^5 + 7^7) + ..... + (7^1997 +7^1999)
A = 7(1 + 7^2) + 75(1 + 7^2) + ... + 71997(1 + 7^2)
A = 7.50 + 75 .50 + 79.50 + ... + 71997.50
=> A Chia hết cho 5 (1)
A = 7 + 7^3 + 7^5 + ... + 7^1999 = 7.( 7^0 + 7^2 + 7^4 + ... + 7^1998)
=> A Chia hết cho 7 (2)
Mà ƯCLN(5,7) = 1 => A Chia cho 35.

5 tháng 7 2017

a, Ta có:

\(5^5-5^4+5^3=5^3.\left(5^2-5+1\right)=5^3.21\)

\(5^3.21\) chia hết cho 7 nên \(5^5-5^4+5^3\) chia hết cho 7(đpcm)

b, Ta có:

\(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55\)

\(7^4.55\) chia hết cho 11 nên \(7^6-7^5+7^4\) chia hết cho 11(đpcm)

Chúc bạn học tốt!!!

5 tháng 7 2017

a, \(5^5-5^4+5^3=5^3\left(5^2-5+1\right)=5^3.21⋮7\)

\(\Rightarrowđpcm\)

b, \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55⋮11\)

\(\Rightarrowđpcm\)