Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
Câu 3 :
b. P là nguyên tố khi và chỉ khi n + 4 chia hết cho 2n - 1
=> 2n + 8 chia hết cho 2n - 1
mà 2n - 1 chia hết cho 2n - 1 . Suy ra 9 chia hết cho 2n - 1
=> 2n - 1 \(\inƯ\)(9) = { 1 , 3 , 9 }
=> 2n - 1 \(\in\) { 1 ,3 , 9 }
=> 2n\(\in\){ 2 , 4 ,10}
=> n\(\in\){ 1, 2 ,5 }
=> P\(\in\){ 5 , 2 , 1 }
Vì P là nguyên tố nên P\(\in\){ 5,2}
vậy n\(\in\){ 1 , 2 }
Câu 4 :