K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2018

a) Số số hàng trong tổng A là:

     \(\frac{\left(2n+1-1\right)}{2}+1=n+1\)

\(A=\frac{\left(2n+1+1\right)\left(n+1\right)}{2}=\left(n+1\right)\left(n+1\right)=\left(n+1\right)^2\)

Do n là số tự nhiên nên A là số chính phương.

b) Số số hạng trong tổng B là:

    \(\frac{2n-2}{2}+1=n\)

\(B=\frac{\left(2n+2\right).n}{2}=\left(n+1\right)n\)

Vậy số B không thể là số chính phương.

22 tháng 7 2015

a. Ta có: A = 5 + 52 + 5+....+ 5100

      \(\Rightarrow A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)

       \(\Rightarrow A=5\left(1+5\right)+5^3.\left(1+5\right)+...+5^{99}.\left(1+5\right)\)

       \(\Rightarrow A=5.6+5^3.6+...+5^{99}.6\)

              \(A=6.\left(5+5^3+...+5^{99}\right)\) chia hết cho 6.

Vì A chia hết cho 6 nên A là hợp số.

17 tháng 12 2016

còn câu b

11 tháng 2 2016

b) Ta có

     A = 3 + 32 + ... + 32004.

=> A = 3 ( 1+ 3 + 32 ) + 34  ( 1+ 3 + 32 ) + ... + 32001 ( 1+ 3 + 32 )

=> A = 3 . 13 + 34 . 13 + ... + 32001 . 13

=> A = 13 ( 3 + 34 + ... + 32001)  chia hết cho 13.

   Lại có :

     A = 3 + 32 + ... + 32004.

=> A = ( 3 + 33) + (32 + 34) + ... + ( 32002 + 32004)

=> A = 3 ( 1+ 9) + 32 ( 1+ 9) + ... + 32003 ( 1+ 9)

=> A = 10 ( 3 + 32 + ... + 3 2003) chia hết cho 10.

 Vậy A vừa chia hết cho 13 vừa chia hết cho 10 mà ( 13;10) = 1

=> A chia hết cho 130.

30 tháng 3 2017

A=3+32+33+......+32004

3A=32+33+......+32005

3A-A= ( 32+33+......+32005 ) - ( 3+32+33+......+32004 )

2A=32005-3

A=\(\frac{3^{2005}-3}{2}\)

T
Tai
VIP
27 tháng 7 2023

 

 Ta có: A = 5 + 52 + 5+....+ 5100

      ⇒�=(5+52)+(53+54)+...+(599+5100)A=(5+52)+(53+54)+...+(599+5100)

       ⇒�=5(1+5)+53.(1+5)+...+599.(1+5)A=5(1+5)+53.(1+5)+...+599.(1+5)

       ⇒�=5.6+53.6+...+599.6A=5.6+53.6+...+599.6

              �=6.(5+53+...+599)A=6.(5+53+...+599) chia hết cho 6.

Vì A chia hết cho 6 nên A là hợp số.

23 tháng 10 2024

A  =5 + 52 + 53 + ... + 5100

A ⋮ 1; 5 ; A (A > 5)

Vậy A là hợp số

b; A = 5 + 52 + 53 + ... + 5100

   A =  5 + 52(1 + 5  + 52 + ... + 598)

 ⇒  A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó. 

 

14 tháng 2 2016

không vì dãy A là dãy lũy thừa của 5 nên chia hết cho 5 vì 5;5^2:...;5^100 đều chia hết cho 5 

Mà có 5 ko chia hết cho 25 còn 5^2;5^3 ;...;5^100 chia hết cho 25 nên A không chia hết cho 25 

Từ trên => A không là số chính phương