Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(P=3^x\left(3+3^2+3^3+3^4\right)+...+3^{x+96}\left(3+3^2+3^3+3^4\right)\)
\(=120\left(3^x+...+3^{x+96}\right)⋮120\)
a)(x2-5x+6)(x2-5x+2)-5
Đặt \(x^2-5x+2=t\) ta được:
\(\left(t+4\right)t-16\)\(=t^2+4t-5\)
\(=t^2+5t-t-5\)
\(=t\left(t+5\right)-\left(t+5\right)\)
\(=\left(t-1\right)\left(t+5\right)\)\(=\left(x^2-5x+2-1\right)\left(x^2-5x+2+5\right)\)
\(=\left(x^2-5x+1\right)\left(x^2-5x+7\right)\)
b) (x2+8x-5)(x2+8x+1)-16
Đặt \(t=x^2+8x-5\) ta đc:
\(t\left(t+6\right)-16\)\(=t^2+6t-16\)
\(=t^2+8t-2t-16\)
\(=t\left(t+8\right)-2\left(t+8\right)\)
\(=\left(t-2\right)\left(t+8\right)\)\(=\left(x^2+8x-5-2\right)\left(x^2+8x-5+8\right)\)
\(=\left(x^2+8x-7\right)\left(x^2+8x+3\right)\)
Ta có : \(\begin{cases}x^2+y^2=5\\x^4-x^2y^2+y^4=13\end{cases}\) . Đặt \(a=x^2+y^2,b=x^2y^2\)
Suy ra : \(\begin{cases}a=5\\a^2-3b=13\end{cases}\) \(\Leftrightarrow\begin{cases}a=5\\b=4\end{cases}\)
Ta có hệ : \(\begin{cases}x^2+y^2=5\\x^2y^2=4\end{cases}\) \(\Leftrightarrow\begin{cases}x^2+y^2=5\\xy=2\end{cases}\) (I)hoặc \(\begin{cases}x^2+y^2=5\\xy=-2\end{cases}\) (II)
Lại đặt \(\begin{cases}m=x+y\\n=xy\end{cases}\) . Giải hệ (I) : \(\begin{cases}m^2-2n=5\\n=2\end{cases}\) \(\Leftrightarrow\begin{cases}m=\pm3\\n=2\end{cases}\)
Tới đây bạn tự giải bằng phương pháp thế.
Giải hệ (II) : \(\begin{cases}m^2-2n=5\\n=-2\end{cases}\) \(\Leftrightarrow\begin{cases}m=\pm1\\n=-2\end{cases}\)
Tới đây bạn tự giải bằng pp thế.
Câu 1:
a: =(1+2-3-4)+(5+6-7-8)+...+(2013+2014-2015-2016)
=(-4)+(-4)+...+(-4)
=-4x504=-2016
b: \(B=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot...\cdot\dfrac{195}{196}=\dfrac{1\cdot3\cdot2\cdot4\cdot...\cdot13\cdot15}{2\cdot3\cdot...\cdot14\cdot2\cdot3\cdot...\cdot14}=\dfrac{15}{14\cdot2}=\dfrac{15}{28}\)
\(A=\left|x+1\right|+5\)
\(\Rightarrow\left|x+1\right|+5\ge5\)
\(\Rightarrow\left|x+1\right|\ge0\)
\(\Rightarrow x+1\ge0\)
\(\Rightarrow x\ge-1\)
Mà A đạt GTNN, suy ra \(\left|x+1\right|\) nhỏ nhất
\(\Rightarrow x=-1\)
Thay \(x=-1\) vào biểu thức ta có:
\(A=\left|-1+1\right|+5=0+5=5\)
Vậy: \(Min_A=5\)
\(B=\left(x-1\right)^2=\left|y-3\right|+2\)
\(B=a^2-2a1+1^2=\left|y-3\right|+2\)
\(B=a^2-2a1+1=\left|y-3\right|+2\)
\(\Rightarrow a^2-2a1+1+2=\left|y-3\right|\)
\(\Rightarrow a\left(a-2\right)+1+2=\left|y-3\right|\)
\(\Rightarrow a\left(a-2\right)+3=\left|y-3\right|\)
\(\Rightarrow\left[\begin{array}{nghiempt}a\left(a-2\right)+3=y-3\\a\left(a-2\right)+3=-y-3\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}a\left(a-2\right)=y-3-3\\a\left(a-2\right)=-y-3-3\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}a\left(a-2\right)=y-6\\a\left(a-2\right)=-y-6\end{array}\right.\)
\(\Rightarrow a^2-2a=-y-6\)
\(\Rightarrow a^2-2a+y=-6\)
\(\Rightarrow a\left(a-2\right)+y=-6\) (loại do âm)
\(a\left(a-2\right)=y-6\)
\(\Rightarrow-y+6=-a\left(a-2\right)\)
\(\Rightarrow6=y-a\left(a-2\right)\) (nhận)
Vậy: \(Min_B=6\)
1) (120a+36b)
=12(20a+3b)
vì 12\(⋮12\)
=>\(12\left(10a+3b\right)⋮12\) hoặc \(120a+36b⋮12\) (đpcm)
B= \(\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]^2\)
ta thấy : \(\left(x+\frac{1}{2}\right)^2\ge0\)
=> \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
=>\(\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]^2\ge\frac{9}{16}\)
=> min B=9/16 kh x=-1/2
C= \(x^2-2xy+y^2+1\)= \(\left(x-y\right)^2+1\)
ta có \(\left(x-y\right)^2\ge0\)=>\(\left(x-y\right)^2+1\ge1\)
=> Min C=1 khi x=y
a) \(16x^2-\left(4x-5\right)^2=15\) \(\Leftrightarrow\) \(16x^2-\left(16x^2-40x+25\right)=15\)
\(\Leftrightarrow\) \(16x^2-16x^2+40x-25=15\) \(\Leftrightarrow\) \(40x-25=15\)
\(\Leftrightarrow\) \(40x=40\) \(\Leftrightarrow\) \(x=1\) vậy \(x=1\)
b) \(\left(2x+3\right)^2-4\left(x-1\right)\left(x+1\right)=49\)
\(\Leftrightarrow\) \(4x^2+12x+9-4\left(x^2-1\right)=49\)
\(\Leftrightarrow\) \(4x^2+12x+9-4x^2+4=49\)
\(\Leftrightarrow\) \(12x+13=49\) \(\Leftrightarrow\) \(12x=36\) \(\Leftrightarrow\) \(x=\dfrac{36}{12}=3\)vậy \(x=3\)
c) \(\left(2x+1\right)\left(2x-1\right)+\left(1-2x\right)^2=18\)
\(\Leftrightarrow\) \(4x^2-1+1-4x+4x^2=18\)\(\Leftrightarrow\) \(8x^2-4x=18\)
\(\Leftrightarrow\) \(8x^2-4x-18=0\)
\(\Delta'=\left(-2\right)^2-8.\left(-18\right)=4+144=148>0\)
\(\Rightarrow\) phương trình có 2 nghiệm phân biệt
\(x_1=\dfrac{2+\sqrt{148}}{8}=\dfrac{1+\sqrt{37}}{4}\)
\(x_2=\dfrac{2-\sqrt{148}}{8}=\dfrac{1-\sqrt{37}}{4}\)
vậy \(x=\dfrac{1+\sqrt{37}}{4};x=\dfrac{1-\sqrt{37}}{4}\)
Giải:
a) \(16x^2-\left(4x-5\right)^2=15\)
\(\Leftrightarrow16x^2-16x^2-40x+25=15\)
\(\Leftrightarrow-40x+25=15\)
\(\Leftrightarrow-40x=15-25=-10\)
\(\Leftrightarrow x=-\dfrac{10}{-40}=\dfrac{1}{4}\)
Vậy \(x=\dfrac{1}{4}\)
b) \(\left(2x+3\right)^2-4\left(x-1\right)\left(x+1\right)=49\)
\(\Leftrightarrow4x^2+12x+9-4\left(x^2-1^2\right)=49\)
\(\Leftrightarrow4x^2+12x+9-4x^2+4=49\)
\(\Leftrightarrow12x+9+4=49\)
\(\Leftrightarrow12x=49-9-4\)
\(\Leftrightarrow12x=36\)
\(\Leftrightarrow x=\dfrac{36}{12}=3\)
Vậy \(x=3\)
c) \(\left(2x+1\right)\left(2x-1\right)+\left(1-2x\right)^2=18\)
\(\Leftrightarrow4x^2-1+1-4x+4x^2=18\)
\(\Leftrightarrow8x^2-4x=18\)
Mình chỉ làm được đến đây thôi, hình như là đề bị sai bạn nhé!
Chúc bạn học tốt!
TOÁN LỚP 6 MÌNH NHẤP LỘN