K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2016

Ta có: 

\(A=3+3^2+3^3+...+3^{2004}\)

\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{2002}+3^{2003}+3^{2004}\right)\)

\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{2002}\left(1+3+3^2\right)\)

\(=\left(3+3^4+...+3^{2002}\right)\left(1+3+3^2\right)\)

\(=\left(3+3^4+...+3^{2002}\right).13\)

=> A chia hết cho 13                  (1)

Lại có: 

\(A=3+3^2+3^3+...+3^{2004}\)

\(=\left(3+3^3\right)+\left(3^2+3^4\right)+...+\left(3^{2001}+3^{2003}\right)+\left(3^{2002}+3^{2004}\right)\)

\(=3\left(1+3^2\right)+3^2\left(1+3^2\right)+...+3^{2001}\left(1+3^2\right)+3^{2002}\left(1+3^2\right)\)

\(=\left(3+3^2+...+3^{2001}+3^{2002}\right)\left(1+3^2\right)\)

\(=\left(3+3^2+...+3^{2001}+3^{2002}\right).10\)

=> A chia hết cho 10                 (2)

Từ (1) (2) suy ra A chia hết cho 130

13 tháng 5 2016

Ta có: 3A   = 3(3+32+...+32004)

           3A   = 32+33+...+32005

           3A-A= 32005 + 3

            2A   = 32005 +3

             A     = 32005 + 3 / 2

Vì A có 2004 số hạng, nhóm A thành các nhóm, mỗi nhóm có 4 số hạng

    =>A=(3+32 +33 +34 )+(35+36 +37+38)+...+(32001+32002+32003+32004)

         A=(3+32+33+34)+34(3+32+33+34)+...+32000(3+32+33+34)

         A=(1+34+...+32000)(3+32+33+34)

         A=(1+34+...+32000).180(chia hết cho 180)

Vậy A chia hết cho 180 (đpcm)

27 tháng 9 2017

T: Câu hỏi của Nguyen Thi Thu Huong - Toán lớp 6 - Học toán với OnlineMath

5 tháng 6 2016

a) Đặt Sn = n3 + 3n2 + 5n

Với n = 1 thì S1 = 9 chia hết cho 3

Giả sử với n = k ≥ 1, ta có Sk = (k3 + 3k2 + 5k)  3

Ta phải chứng minh rằng Sk+1  3

Thật vậy Sk+1 = (k + 1)3 + 3(k + 1)2 + 5(k + 1) 

                        = k3  + 3k2 + 3k + 1 + 3k2 + 6k + 3 + 5k + 5 

                         = k3 + 3k2 + 5k + 3k2 + 9k + 9

 hay Sk+1 = Sk + 3(k2 + 3k + 3)

Theo giả thiết quy nạp thì Sk   3, mặt khác 3(k2 + 3k + 3)  3 nên Sk+1  3.

Vậy (n3 + 3n2 + 5n)  3 với mọi n ε N*  .


 

5 tháng 6 2016

b) Đặt Sn = 4n + 15n - 1 

Với n = 1, S1 = 41 + 15.1 – 1 = 18 nên S1   9

Giả sử với n = k ≥ 1 thì Sk= 4k + 15k - 1 chia hết cho 9.

Ta phải chứng minh Sk+1  9.

Thật vậy, ta có: Sk+1 = 4k + 1 + 15(k + 1) – 1

                                    = 4(4k + 15k – 1) – 45k + 18 = 4Sk – 9(5k – 2)    

Theo giả thiết quy nạp thì  Sk   9  nên 4S1   9, mặt khác 9(5k - 2)   9, nên Sk+1  9

Vậy (4n + 15n - 1)  9 với mọi n ε N*  



 

1.Áp dụng định lý Fermat nhỏ.

27 tháng 8 2019

1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)

\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)

\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)

Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)

và \(5\left(a-1\right)a\left(a+1\right)⋮5\)

=> \(a^5-a⋮5\)

Nếu \(a^5⋮5\)=> a chia hết cho 5

27 tháng 8 2019

1. Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1)
= a(a - 1)(a + 1)(a² - 4 + 5)
= a(a - 1)(a + 1)[ (a² - 4) + 5) ]
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1)
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1)
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1)
Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 5 mà 5a(a - 1)(a + 1) chia hết cho 5
=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 5.
=> a^5 - a chia hết cho 5
Mà a^5 chia hết cho 5 => a chia hết cho 5.
( Nếu a không chia hết cho 5 thì a^5 - a không chia hết cho 5 vì a^5 chia hết cho 5)

7 tháng 9 2017

1) ta đặc \(a^2+a+1=P=0\) \(\Rightarrow\left(a-1\right).p=0\) (vì \(P=0\))

ta có : \(P=a^2+a+1=0\Leftrightarrow a.P=a\left(a^2+a+1\right)=0\) (vì \(P=0\) )

\(\Leftrightarrow a.P=a^3+a^2+a=0\)

\(\Rightarrow a.P-P=\left(a-1\right).P=\left(a^3+a^2+a\right)-\left(a^2+a+1\right)\)

\(\left(a-1\right).P=a^3-1=0\Leftrightarrow a^3=1\) (vì \(\left(a-1\right).P=0\))

vậy \(a^3=1\left(đpcm\right)\)

2) ta có: \(a^2-2a+4=0\Leftrightarrow a^2-2a+1+3=0\)

\(\Leftrightarrow\left(a-1\right)^2+3=0\)

ta có : \(\left(a-1\right)^1\ge0\) với mọi \(a\) \(\Rightarrow\left(a-1\right)^2+3\ge3>0\) với mọi \(a\)

vậy phương trình : \(a^2-2a+4=0\) vô nghiệm

vậy không có giá trị \(a\) thỏa mảng \(\Leftrightarrow a^3+\dfrac{1}{a^3}\) không tồn tại và không có giá trị

8 tháng 10 2020

Từ pt ta có: \(-\left(1+x^4\right)=\text{ax}^3+bx^2+cx\)

Áp dụng BĐT B.C.S:

\(\left(1+x^4\right)^2=\left(\text{ax}^3+bx^2+cx\right)^2\le\left(a^2+b^2+c^2\right)\left(x^6+x^4+x^2\right)\)\(\Rightarrow\left(a^2+b^2+c^2\right)\ge\frac{\left(1+x^4\right)^2}{x^6+x^4+x^2}\left(1\right)\)

Mặt khác: \(\frac{\left(1+x^4\right)^2}{x^6+x^4+x^2}\ge\frac{4}{3}\left(2\right)\)

Thật vậy: \(\left(2\right)\Leftrightarrow3\left(1+2x^4+x^8\right)\ge4\left(x^6+x^4+x^2\right)\)

\(\Leftrightarrow3x^8-4x^6+2x^4-4x^2+3\ge0\)

\(\Leftrightarrow\left(x^2-1\right)^2\left(3x^4+2x^2+3\right)\ge0\)(luôn đúng)

Từ 1 và 2 : \(a^2+b^2+c^2\ge\frac{4}{3}\)

Dấu '=' xảy ra khi và chỉ khi \(\orbr{\begin{cases}a=b=c=\frac{2}{3}\left(x=1\right)\\a=b=c=\frac{-2}{3}\left(x=-1\right)\end{cases}}\)