Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(2^1+2^2+2^3)+(2^4+2^5+2^6)+...+(2^58+2^59+2^60)
=2^1(1+2+2^2) + 2^4(1+2+2^2)+...+2^58(1+2+2^2)
=(1+2+2^2)(2^1+2^4+...+2^58)
=7(2^1+2^4+...+2^58). =>chia hết cho 7
Vậy A chia hết cho 7
Ta có : A = 2^1 + 2^2 + 2^3 + ... + 2^59 + 2^60
Số lượng số của A là : ( 60 - 1 ) :1 + 1 = 60 ( số )
Vì \(60⋮4\)nên ta nhóm 43số liền nhau thành 1 nhóm như sau :
A = ( 2^1 + 2^2 +2^3 ) + ( 2^5 +2^6 + 2^7 ) + ...+ ( 2^58 +2^59 +2^60 )
= 2^1 . ( 1 + 2 + 2^2 ) + 2^5 . ( 1 + 2 + 2^2 ) + ... + 2^58 . ( 1 + 2 + 2^2 )
= 2^1 . 7 + 2^5 . 7 + ...+ 2^58 . 7
= 7 . ( 2^1 + 2^5 +..+2^58 ) \(⋮7\)\(\left(ĐPCM\right)\)
Tham khảo cách làm của Mk nhé !!!
Ta có : A = 2 + 22 + 23 + 24 + .. + 259 + 260
= (2 + 22) + (23 + 24) + .. + (259 + 260)
= 2(2 + 1) + 23(2 + 1) + ... + 259(2 + 1)
= (2 + 1)(2 + 23 + ... + 259) = 3(2 + 23 + ... + 259) \(⋮\)3
Có : 126 chia hết cho 3, 213 chia hết cho 3
Để được M chia hết cho 3 thì x phải chia hết cho 3
Hay gọi là 3k ( k thuộc N)
2.
Hình như đầu bài bài 2 sai
1. A = 2 + 22 + 23 + 24 + ... + 260
A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 258 + 259 + 260 )
A = 2 ( 1 + 2 + 22 ) + 24 ( 1 + 2 + 22 ) + ... + 258 ( 1 + 2 + 22 )
A = 2 . 7 + 24 . 7 + ... + 258 . 7
A = ( 2 + 24 + ... + 258 ) . 7 => A \(⋮\)7
Vậy ...
2.Ta có : \(n+4⋮n+1\)
Mà : \(n+1⋮n+1\)
\(\Rightarrow\left(n+4\right)-\left(n+1\right)⋮n+1\Rightarrow n+4-n-1⋮n+1\)
\(\Rightarrow3⋮n+1\Rightarrow n+1\in\left\{1;3\right\}\)
\(\Rightarrow n\in\left\{0;2\right\}\)
3. Đặt B = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27
B = ( 1 + 2 ) + ( 22 + 23 ) + ( 24 + 25 ) + ( 26 + 27 )
B = ( 1 + 2 ) + 22 ( 1 + 2 ) + 24 ( 1 + 2 ) + 26 ( 1 + 2 )
B = 1 . 3 + 22 . 3 + 24 . 3 + 26 . 3
B = ( 1 + 22 + 24 + 26 ) . 3 \(\Rightarrow\) B \(⋮\)3
Vậy ...
Ta có :
=2+2^2+2^3+...+2^60 = 2(1+2+2^2+2^3) + 2^5(1+2+2^2+2^3) + ... + 2^57(1+2+2^2+2^3)
A=(2+2^5+...+2^57)*15 chia het cho 15
CM:
A chia hết cho 21
=> A chia hết cho 3 và 7
Ta có
A=2(1+2)+2^3(1+2)+..............+2^59(1...
A=3(2+2^3+2^5+........+2^59)chia hết cho 3
Ta có :
A=2(1+2+2^2)+2^4(1+2+2^2)+...........+2...
A=7(2+2^4+2^7+..........+2^58)
=> A chia hết cho 3 và 7=> A chia hết
Vậy A chia hết cho 21 và 15
\(A=2\left(2+1\right)+2^3\left(2+1\right)+2^5\left(1+2\right)+.....+2^{59}\left(2+1\right)\)
\(=2.3+2^3.3+2^5.3+.....+2^{59}.3\)
Vậy \(A⋮3\)