K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2015

1,2^5 < 2^n < 2^7 => n = 6

2,2^4 \(\ge\)2^n > 2^2 => n= 3 ; 4

3, 3^ 3 \(\le3^n\le3^4\) => n = 3 ; 4

Bài 2

a, 5^5 - 5^4 + 5^3 = 5^3(5^2 - 5 + 1) = 5^3 .21=3.5^3.7 chia hêt cho 7

b,7^6 + 7^5 -7^ 4 =7^4 ( 7^2 + 7 - 1 ) = 7^ 4 .55=11.5.7^4 chia hết cho 11 

 

 

 

 
 

3 tháng 10 2016

lắm thế ai làm nổi

26 tháng 7 2019

giúp đi mà huh

1 tháng 9 2019

C.\(\frac{4^5.\left(1+1+1+1\right)}{3^5.\left(1+1+1\right)}.\frac{6^6}{2^{5+}2^5}=\frac{4^6}{3^6}.\frac{6^6}{2^5+2^5}=\frac{24^6}{3^6.\left(2^5+2^5\right)}=\frac{8^6}{2^5.\left(1+1\right)}\)=\(\frac{8^6}{2^6}\)=4^6=4096

3 tháng 9 2019

\(^{4^6=2^{12}}\)

           \(\Rightarrow\)n=12

9 tháng 6 2016

\(\left(5+5^2+5^3+...+5^{10}\right)+4x-1=\frac{1}{4}5^{11}+\frac{1}{2}x+3\)

\(\Leftrightarrow\left(1+5+5^2+5^3+...+5^{10}\right)+4x-2=\frac{1}{4}5^{11}+\frac{1}{2}x+3\)(1)

1./ Trước tiên, ta tính: 

\(S=1+5+5^2+5^3+...+5^{10}\)

\(\left(5-1\right)\cdot S=\left(5-1\right)\left(1+5+5^2+5^3+...+5^{10}\right)\)

\(\Leftrightarrow4S=5^{11}-5^{10}+5^{10}-5^9+...+5-1=5^{11}-1\)

\(\Leftrightarrow S=\frac{5^{11}-1}{4}=\frac{1}{4}5^{11}-\frac{1}{4}\)

2./ (1) trở thành:

\(\Leftrightarrow\frac{1}{4}5^{11}-\frac{1}{4}+4x-2=\frac{1}{4}5^{11}+\frac{1}{2}x+3\)

\(\Leftrightarrow4x-\frac{1}{2}x=5+\frac{1}{4}\Leftrightarrow\frac{7}{2}x=\frac{21}{4}\)

\(\Leftrightarrow x=\frac{3}{2}\).