Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Căng, sự thật là nó rất căng
Nhg dù sao thì.....
1) \(A\left(x\right)=\left(x-4\right)^2-\left(2x+1\right)^2\)
Xét \(A\left(x\right)=0\)
\(\Rightarrow\left(x-4\right)^2-\left(2x+1\right)^2=0\)
\(\Rightarrow x^2-8x+16-4x^2-4x-1=0\)
\(\Rightarrow-3x^2-12x+15=0\)
\(\Rightarrow-3x^2+3x-15x+15=0\)
\(\Rightarrow-3x\left(x-1\right)-15\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(-3x-15\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\-3x-15=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
2)(Sửa đề nha, sai cmnr) \(B\left(x\right)=x^3+x^2-4x-4\)
Xét \(B\left(x\right)=0\)
\(\Rightarrow x^3+x^2-4x-4=0\)
\(\Rightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)
\(\Rightarrow\left(x^2-4\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\pm2\\x=-1\end{matrix}\right.\)
Đó là những j mình biết
1, \(\left(x-4\right)^2-\left(2x+1\right)^2=\left(x-4-2x-1\right)\left(x-4+2x+1\right)=-3\left(x+5\right)\left(x-1\right).\)
\(\orbr{\begin{cases}x+5=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=1\end{cases}}}\)(mấy cái này áp dụng hàng đẳng thức lớp 8 mới hok)
2,\(x^3+x^2-4x-4=\left(x-2\right)\left(x^2+3x+2\right)=\left(x-2\right)\left(x+1\right)\left(x+2\right)\)
\(\orbr{\begin{cases}x=\mp2\\\end{cases}}x=-1\)
tương tụ lm tiếp nhe buồn ngủ quá rồi !
1) \(\frac{25}{12}.x+\frac{11}{15}=\frac{9}{10}\)
=> \(\frac{25}{12}.x=\frac{9}{10}-\frac{11}{15}\)
=> \(\frac{25}{12}.x=\frac{1}{6}\)
=> \(x=\frac{1}{6}:\frac{25}{12}\)
=> \(x=\frac{2}{25}\)
Vậy \(x=\frac{2}{25}\).
3) \(\frac{29}{12}.\left[x\right]-\frac{5}{6}=\frac{3}{8}\)
=> \(\frac{29}{12}.\left[x\right]=\frac{3}{8}+\frac{5}{6}\)
=> \(\frac{29}{12}.x=\frac{29}{24}\)
=> \(x=\frac{29}{24}:\frac{29}{12}\)
=> \(x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\).
4) \(\left[4x+\frac{3}{4}\right]-\frac{5}{4}=2\)
=> \(\left[4x+\frac{3}{4}\right]=2+\frac{5}{4}\)
=> \(4x+\frac{3}{4}=\frac{13}{4}\)
=> \(4x=\frac{13}{4}-\frac{3}{4}\)
=> \(4x=\frac{5}{2}\)
=> \(x=\frac{5}{2}:4\)
=> \(x=\frac{5}{8}\)
Vậy \(x=\frac{5}{8}\).
5) 2x + 2x+3 = 144
⇔ 2x + 2x . 23 = 144
⇔ 2x . (1 + 23) = 144
⇔ 2x . 9 = 144
⇔ 2x = 144 : 9
⇔ 2x = 16
⇔ 2x = 24
=> x = 4
Vậy x = 4.
Chúc bạn học tốt!
\(\frac{3^{11}\div5+3^{11}.3}{3^{10}.2^2}=\frac{3^{11}\cdot\frac{1}{5}+3^{11}\cdot3}{3^{10}.2^2}\)
\(=\frac{3^{11}.\left(\frac{1}{5}+3\right)}{3^{10}.2^2}=\frac{3^{11}.\frac{16}{5}}{3^{10}.2^2}=\frac{\frac{48}{5}}{2^2}=\frac{48}{5}\cdot\frac{1}{4}=\frac{12}{5}\)
\(\frac{1}{3^{10}}\div\frac{1}{9^5}=\frac{1}{3^{10}}\div\frac{1}{3^{10}}=1\)
\(\left(5+5^2+5^3+...+5^{10}\right)+4x-1=\frac{1}{4}5^{11}+\frac{1}{2}x+3\)
\(\Leftrightarrow\left(1+5+5^2+5^3+...+5^{10}\right)+4x-2=\frac{1}{4}5^{11}+\frac{1}{2}x+3\)(1)
1./ Trước tiên, ta tính:
\(S=1+5+5^2+5^3+...+5^{10}\)
\(\left(5-1\right)\cdot S=\left(5-1\right)\left(1+5+5^2+5^3+...+5^{10}\right)\)
\(\Leftrightarrow4S=5^{11}-5^{10}+5^{10}-5^9+...+5-1=5^{11}-1\)
\(\Leftrightarrow S=\frac{5^{11}-1}{4}=\frac{1}{4}5^{11}-\frac{1}{4}\)
2./ (1) trở thành:
\(\Leftrightarrow\frac{1}{4}5^{11}-\frac{1}{4}+4x-2=\frac{1}{4}5^{11}+\frac{1}{2}x+3\)
\(\Leftrightarrow4x-\frac{1}{2}x=5+\frac{1}{4}\Leftrightarrow\frac{7}{2}x=\frac{21}{4}\)
\(\Leftrightarrow x=\frac{3}{2}\).