K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

1/a)Ta có: A = 2 + 22 + 23 + ... + 260

= (2 + 22) + (23+24) + ... + (259 + 560)

= (2.1 + 2.2) + (23.1 + 23.2) + ... + (259.1 + 259.2)

= 2.(1 + 2) + 23.(1 + 2) + ... + 259.(1 + 2)

= 2.3 + 23.3 + ... + 259.3

= 3.(2 + 23 + ... + 259) \(⋮\) 3

Vậy A \(⋮\) 3.

b) Tương tự: gộp 3.

c) gộp 4

6 tháng 4 2017

Bài 1:

a, A = 2 + 22 + 23 + ... + 260

= ( 2 + 22 ) + ( 23 + 24 ) + .... + ( 259 + 260 )

= 2 . ( 1 + 2 ) + 23 . ( 1 + 2 ) + ... + 259 . ( 1 + 2 )

= 2 . 3 + 23 . 3 + ... + 259 . 3

= 3 . ( 2 + 23 + ... + 259 )

Vậy A chia hết cho 3

b,A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 258 + 259 + 260 )

= 2 . ( 1 + 2 + 22 ) + 24 . ( 1 + 2 + 22 ) + ... + 258 . ( 1 + 2 + 22)

= 2. 7 + 24 . 7 + ... + 258 . 7

= 7 . ( 2 + 24 + ... + 258 )

Vậy A chia hết cho 7

c, Ta có:

A= ( 2 + 22 + 23 + 24 ) + ............ + ( 257 + 258 + 259 + 260 )

= 2 . ( 1 + 2 + 22 + 23 ) + ............ + 257 . ( 1 + 2 + 22 + 23 )

= 2. 15 + ............ + 257 . 15

= 15 . ( 2 + ...............+ 257 )

Vậy A chia hết cho 15

2 tháng 11 2016

Chọn

Giải ra đầy đủ nhá

2 tháng 11 2016

Ôi tr. Ý mk mún nói là giải bài ra cho mình

18 tháng 7 2018

\(A=1+3+3^2+3^3+...+3^{11}\)

\(A=\left(1+3+3^2\right)\) \(+\left(3^4+3^5+3^6\right)+...+\)\(\left(3^9+3^{10}+3^{11}\right)\)

\(A=13+3^3+13+...+3^9+13\)

\(A=13.\left(1+3^3+...+3^9\right)\)

\(\Rightarrow\) \(A⋮13\)

Dựa theo bài của mình hãy làm bài chứng minh chia hết cho 40 nhé !
Học giỏi nha lê thị hà myavt1250073_60by60.jpg

18 tháng 7 2018

 A=1+3+32+33+...+311

= ( 1 + 3 + 32 ) + ( 33 + 34 + 35 ) + ( 36 + 37  + 38 ) + ( 39 + 310  + 311)

= 13 + ( 33 . ( 1 + 3 + 32) ) + ( 36 . ( 1 + 3 + 32 ) )  + ( 39 . ( 1 + 3 + 32 )

 = 13 + ( 33 . 13 ) +.....+ ( 39 . 13 )

= 13 . ( 1 + 33 + 36 + 39 )  chia hết cho 13

=> A chia hết cho 13 ( đpcm)

23 tháng 11 2015

A = (1 + 3 + 32) + (33 + 34 + 35)  +..... + (39+310+311)

A = 13.1 + 33.13 + ...... + 39.13

A = 13.(1+33+....+39)

A chia hết cho 13

29 tháng 9 2019

a) Ta có : \(C=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\)

\(=\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+...+3^9.\left(1+3+3^2\right)\)

\(=13+3^3.13+...+3^9.13\)

\(=13.\left(1+3^3+...+3^9\right)⋮13\)

\(\Rightarrow C⋮13\left(\text{đpcm}\right)\)

b) Ta có : \(C=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\)

\(=\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^4\right)+3^8.\left(1+3+3^2+3^3\right)\)

\(=40+3^4.40+3^8.40\)

\(=40.\left(1+3^4+3^8\right)⋮40\)

\(\Rightarrow C⋮40\left(\text{đpcm}\right)\)