Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do A + B + C = 180 độ nên góc A bù với góc B + C => sin(B + C) = sinA (sin hai góc bù bằng nhau)
(A + B)/2 + C/2 = 90 độ => hai góc (A + B)/2 và C/2 là hai góc phụ nhau => cos (A + B)/2 = sin(C/2) (Chắc đề bài bạn cho nhầm thành sinC)
b) Bạn xem lại đề nhé
c) \(sin^6a+cos^6a+3sin^2a.cos^2a=\left(sin^2a\right)^3+\left(cos^2a\right)^3+3.sin^2a.cos^2a\)
= \(\left(sin^2a+cos^2a\right)\left(sin^4a+cos^4a-sin^2a.cos^2a\right)+3sin^2a.cos^2a\)
= \(sin^4a+cos^4a+2sin^2a.cos^2a\)
= \(\left(sin^2a+cos^2a\right)^2=1\)
Lời giải:
Bài 1)
Nếu \(p^2-1\in\mathbb{P}\Rightarrow (p-1)(p+1)\in\mathbb{P}\)
Khi đó trong hai thừa số $p-1$ hoặc $p+1$ phải có một thừa số có giá trị bằng $1$, số còn lại là số nguyên tố. Vì $p-1<p+1$ nên \(p-1=1\Rightarrow p=2 \in\mathbb{P} \Rightarrow p+1=3\in\mathbb{P}(\text{thỏa mãn})\)
Khi đó \(8p^2+1=33\) là hợp số. Do đó ta có đpcm.
P/s: Hẳn là bạn chép nhầm đề bài khi thêm dữ kiện $p>3$. Với $p>3$ thì $p^2-1$ luôn là hợp số bạn nhé.
Câu 2:
a) Câu này hoàn toàn dựa vào tính chất của số chính phương
Ta biết rằng số chính phương khi chia $3$ có dư là $0$ hoặc $1$. Mà \(p,q\in\mathbb{P}>3\Rightarrow \) $p,q$ không chia hết cho $3$. Do đó:
\(\left\{\begin{matrix} p^2\equiv 1\pmod 3\\ q^2\equiv 1\pmod 3\end{matrix}\right.\Rightarrow p^2-q^2\equiv 0\pmod 3\Leftrightarrow p^2-q^2\vdots3(1)\)
Mặt khác, vì số chính phương lẻ chia cho $8$ luôn có dư là $1$ nên
\(p^2\equiv 1\equiv q^2\pmod 8\Rightarrow p^2-q^2\equiv 0\pmod 8\Leftrightarrow p^2-q^2\vdots 8\)$(2)$
Từ $(1)$, $(2)$ kết hợp với $(3,8)=1$ suy ra \(p^2-q^2\vdots 24\)
b) Vì \(a,a+k\in\mathbb{P}>3\) nên $a,a+k$ phải lẻ. Do đó $k$ phải chẵn \(\Rightarrow k\vdots 2\) $(1)$
Mặt khác, từ điều kiện đề bài suy ra $a$ không chia hết cho $3$. Do đó $a$ chia $3$ dư $1$ hoặc $2$. Nếu $k$ cũng chia $3$ dư $1$ hoặc $2$ ( $k$ không chia hết cho $3$) thì luôn tồn tại một trong hai số $a+k$ hoặc $a+2k$ chia hết cho $3$ - vô lý vì $a+k,a+2k\in\mathbb{P}>3$
Do đó $k\vdots 3$ $(2)$
Từ $(1)$ và $(2)$ kết hợp $(2,3)=1$ suy ra $k\vdots 6$ (đpcm)
Bài 2:
a) Ta có:
\(S=1-3+3^2-3^3+3^4-3^5+3^6-3^7+...+3^{96}-3^{97}+3^{98}-3^{99}\)
\(=\left(1-3+3^2-3^3\right)+\left(3^4-3^5+3^6-3^7\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)
\(=1.\left(1-3+3^2-3^3\right)+3^4.\left(1-3+3^2-3^3\right)+...+3^{96}.\left(1-3+3^2-3^3\right)\)
\(=\left(1+3^4+...+3^{96}\right).\left(1-3+3^2-3^3\right)\)
\(=\left(1+3^4+...+3^{96}\right).\left(-20\right)\) \(\text{⋮}\) \(-20\)
Vậy \(S\) \(\text{⋮}\) \(-20\)
Bài 1:
Ta có:
\(A=\left(5m^2-8m^2-9m^2\right).\left(-n^3+4n^3\right)\)
\(=\left[\left(5-8-9\right).m^2\right].\left[\left(-1+4\right).n^3\right]\)
\(=\left(-12\right).m^2.3.n^3\)
\(=\left(m^2.3\right).\left[\left(-12\right)n^3\right]\)
Xét: \(m^2\ge0\) với V m
3>0 nên \(m^2.3\ge0\) với V m
Như vậy để \(A\ge0\) thì \(\left(-12\right)n^3\ge0\)
-12 < 0 nên nếu \(\left(-12\right)n^3\ge0\) thì \(n^3<0\Rightarrow n<0\)
Vậy với n<0 và mọi m thì \(A\ge0\)
A+B+C=\(x^2yz+xy^2z+xyz^2=xyz\left(x+y+z\right)=xyz.1=xyz\)
Ta có : A+B+C=x2yz+xy2z+xyz2=xyz(x+y+z)
màx+y+z=1 nên A+B+C=xyz.1=xyz
vậy A+B+C=xyz
\(A=\frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}=\frac{1}{4}+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{50.50}\)
\(<\frac{1}{4}+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=\frac{1}{4}+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\frac{1}{4}+\frac{1}{1}-\frac{1}{50}=\frac{123}{100}<2\)
Vậy A<2
Ta có:A=1/2^2+(1/2^2+1/3^2+......+1/50^2)
1/2^2<1/1.2
1/3^2<1/2.3
......
1/50^2<1/49.50
=>1/2^2+1/3^2+......+1/50^2<1/1.2+1/2.3+......+1/49.50=1/1-1/2+1/2-1/3+.......+1/49-1/50=1/1-1/50=49/50<1
=> A<1/2^2+1=5/4<8/4=2
Vậy A<2( đpcm)