Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây là chút lí thuyết về c/s tận cùng của 1 lũy thừa cơ số 3:
+, 3^4k = ...1
+, 3^(4k+1) = ....3
+, 3^(4k+2)=....9
+, 3^(4k+3) = ....7
Một số cphương thì ko có tận cùng là 2,3,7,8
Suy ra ta phân tích A như sau:
A = (1+3^4+...+3^100)+(3+3^5+...+3^101)+(3^2+3^6+...+3^102)+(3^3+...+3^99)
Suy ra c/s tận cùng của A chính là c/s tận cùng của:
1.101+3.101+9.101+7.100=2013
Suy ra A có c/s tận cùng là 3
Suy ra A ko phải số cphương
a,
A = 2 + 22 + 23 +...+210
A = (2 + 22 ) + (23 +24 ) + ...+ (29 + 210 )
A = 2 ( 1+2 ) + 23(1+2 ) + ...+ 29(1+2)
A = 2 .3 + 23 .3 + ...+29.3
A = 3 ( 2+ 23 + ...+ 29 ) \(⋮\) 3 3
Vậy A \(⋮\) 3
b, A = 2 + 22 + 23 +...+210
A = ( 2 + 22 + 23 + 24 + 25 ) + ( 26 + 27 + 28 + 29 + 210 )
A = 2 ( 1+2+22 + 23 + 24 ) + 26(1+2+22 + 23 + 24)
A = 2 . 31 + 26 .31
A = 31(2+26 ) \(⋮\) 31
vậy A \(⋮\) 31
d , A = 2 + 22 + 23 +...+210
\(A=2+2^2+2^3+...+2^{98}+2^{99}\)
\(2A=2^2+2^3+2^4+...+2^{99}+2^{100}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{99}+2^{100}\right)-\left(2+2^2+2^3+...+2^{98}+2^{99}\right)\)
\(A=2^{100}-2\)
\(\Rightarrow A+2=2^{100}=\left(2^{50}\right)^2\)
Vậy A + 2 là một số chính phương
Vì mọi số hạng trong tổng A đều là số chính phương
Mà các tổng các scp là một scp
=>A là số chính phương(đpcm)
\(A=1+2+2^2+2^3+...+2^{99}\)
\(=>2A=2+2^2+2^3+2^4+...+2^{100}\)
\(=>2A-A=\left(2+2^2+2^3+2^4+...+2^{100}\right)-\left(1+2+2^2+2^3+...+2^{99}\right)\)
\(=>A=-1+2^{100}\)
\(=>A+1=2^{100}-1+1=2^{100}⋮2\)
Vậy A+1 là số chính phương.