Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo nhé!
Câu hỏi của Nguyễn Đình Dũng - Toán lớp 6 - Học toán với OnlineMath
+) Chứng minh 6a - b chia hết cho 13
ta có (8a + 3b) + 3.(6a - b) = 8a + 3b + 18a - 3b = 26a
Vì 26a; 8a + 3b chia hết cho 13 nên 3.(6a - b) chia hết cho 13 . mà 3 không chia hết cho 13 nên 6a - b chia hết cho 13 => 6a - b = 13.k
+) Chứng minh a + 2b chia hết cho 13
Ta có: 2(8a + 3b) - 3(a + 2b) = 16a + 6b - 3a - 6b = 13a
Vì 8a + 3b chia hết cho 13 nên 2(8a + 3b) chia hết cho 13; 13a luôn chia hết cho 13
=> 3(a + 2b) chia hết cho 13 => a + 2b chia hết cho 13 => a + 2b = 12.q
Vậy (6a - b)(a+ 2b) = 13.k. 13.q = 169.k.q => (6a - b)(a+ 2b) chia hết cho 169
Ta có: 2a - 3b chia hết cho 13 => 9.(2a - 3b) chia hết cho 13 => 18a - 27b chia hết cho 13
Lại có: (18a - 27b) + (8a - b) = 18a - 27b + 8a - b = 26a - 26b = 13.(2a - 2b) chia hết cho 13
=> (18a - 27b) + (8a - b) chia hết cho 13
mà 18a - 27b chia hết cho 13
=> 8a - b chia hết cho 13 (đpcm)
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^
Câu hỏi của Nguyễn Đình Dũng - Toán lớp 6 - Học toán với OnlineMath
Bạn tham khảo link này nhé!
Giả sử: abc¯¯¯¯¯¯¯+(2a+3b+c)abc¯+(2a+3b+c)chia hết cho7, ta có:
abc¯¯¯¯¯¯¯+(2a+3b+c)=a.100+b.10+c+2a+3b+c=a.98+7.babc¯+(2a+3b+c)=a.100+b.10+c+2a+3b+c=a.98+7.b
Vì a.98a.98 chia hết cho 7(98 chia hết cho 7)7.b7.b chia hết cho 7 ⇒a.98+b.7⇒a.98+b.7 chia hết cho 7
⇒abc¯¯¯¯¯¯¯+(2a+3b+c)⇒abc¯+(2a+3b+c)chia hết cho 7
Mà theo đầu đề bài abc¯¯¯¯¯¯¯abc¯chia hết cho 7 => 2a+3b+c chia hết cho 7
A = ( 8a + 9b ) . ( 3a + 2b )
= 11a + 11b chia hết cho 11
=> A chia hết cho 11
=> A chia hết cho 121 ( đpcm)
\(a+3b⋮13\Rightarrow\left\{{}\begin{matrix}a⋮13\\3b⋮13\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}5a⋮13\\3b⋮13\end{matrix}\right.\Rightarrow5a+3b⋮13\)
Bạn tham khảo link này nhé!
Câu hỏi của Nguyễn Đình Dũng - Toán lớp 6 - Học toán với OnlineMath