Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các số dư của 4 số ấy do khác nhau nên lần lượt bằng 1; 2; 3; 4.
Số dư của tổng 4 số ấy khi chia cho 5 = 1 + 2 + 3 + 4 = 10 chia hết cho 5.
Nên tổng 4 số ấy chia hết cho 5.
c) Gọi 2 số đó là n và n +1
n + (n+1) = 2n + 1 không chia hết cho 2
d) Tương tự : 3 số đó là n ; n+1 ; n +2
n + n + 1 + n + 2 = 3n + 3 chia hết cho 3
e) n + n + 1 + n + 2 + n + 3 = 4n+5 không chia hết cho 4
=> Số đó có dạng aa
aa chia 5 dư 2
=> aa = 77 hoặc aa = 22
Mà aa chia hết cho 2
=> aa = 22
Vậy số cần tìm là 22
a chia cho 4 thì dư 3, chia cho 5 thì dư 4, chia cho 6 thì dư 5
\(\Rightarrow\)a + 1 \(⋮\)4,5,6
nên a + 1 \(⋮\) BCNN ( 4,5,6 )
\(\Rightarrow\)a + 1 \(⋮\)60
vì a + 1 \(⋮\)60 \(\Rightarrow\)a + 1 - 300 \(⋮\)60 hay a - 299 \(⋮\)60 ( 1 )
a \(⋮\)13 \(\Rightarrow\)a - 13 . 23 \(⋮\)13 hay a - 299 \(⋮\)13 ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)a - 299 \(⋮\)BCNN ( 60 ; 13 ) = 780
vậy dạng chung của a là : a = 780k + 299 ( k thuộc N )
Các số tự nhiên không chia hết cho 5 sẽ có dạng : \(5k\pm1;5k\pm2\) (k thuộc N)
Ta giả sử các số đó là \(a=5k+1,b=5k-1,c=5k-2,d=5k+2\)
\(\Rightarrow a+b+c+d=\left(5k+1\right)+\left(5k-1\right)+\left(5k-2\right)+\left(5k+2\right)=20k\)
Vì 20k chia hết cho 5 nên a + b + c + d chia hết cho 5 (đpcm)
Gọi 4 số đó lần lượt là a ; b ; c ; d
Đặt:
a = 5n + 1
b = 5n + 2
c = 5n + 3
d = 5n + 4
a + b + c + d
= (5n + 1) + (5n + 2) + (5n + 3) + (5n + 4)
= 20n + 10
=> a + b + c + d \(⋮\) 5