K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2017

3x+y=1

y^2=1-6x+9x^2

a) M=12(x^2-2.1/4x+1/16)+1-12/16

GTNN=1-3/4=1/4 khi x=1/4=>y=1/4

b) N=xy=x(1-3x)=-3x^2+x=-3(x^2-2.1/6x+1/36)+3/36

GTLN =1/12 khi x=1/6 ;y=1/2

16 tháng 6 2017

a) Áp dụng BĐT Bunhia ta có:

\(\left(3+1\right)\left(3x^2+y^2\right)\ge\left(3x+y\right)^2\)

<=> \(3x^2+y^2\ge3^2:4=\dfrac{9}{4}\)

=> Dấu = xảy ra <=> \(\left\{{}\begin{matrix}3x+y=3\\x=y\end{matrix}\right.\) <=> \(x=y=\dfrac{3}{4}\)

b) Ta có: \(3x+y=3\) => \(y=3-3x\) (1)

Thay (1) vào N ta được:

N = \(2.\left(3-3x\right)x\) = \(6x-6x^2\) = \(-6\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{2}\)

= \(-6\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{2}\) \(\le\) \(\dfrac{3}{2}\)

=> Dấu = xảy ra <=> \(\left\{{}\begin{matrix}y=3-3x\\x=\dfrac{1}{2}\end{matrix}\right.\) <=> \(x=\dfrac{1}{2};y=\dfrac{3}{2}\)

18 tháng 2 2017

a ) |x - 5| + |x + 6| = |5 - x| + |x + 6|

Áp dụng bđt |a| + |b| ≥ |a + b| ta có :

|5 - x| + |x + 6| ≥ |5 - x + x + 6| = |11| = 11

Dấu "=" xảy ra <=> (5 - x)(x + 6) ≥ 0 <=> - 6 ≤ x ≤ 5

Vậy gtnn của |x - 5| + |x + 6| là 11 <=> - 6 ≤ x ≤ 5

b ) Vì (3x - 1)2 ≥ 0

Để |3x - 1| - (3x - 1)2 max <=> (3x - 1)2 min hay (3x - 1)2 = 0 => x = 1/3

=> max |3x - 1| - (3x - 1)= 0 tại x = 1/3

18 tháng 2 2017

a ) |x - 5| + |x + 6| = |5 - x| + |x + 6|

Áp dụng bđt |a| + |b| ≥ |a + b| ta có :

|5 - x| + |x + 6| ≥ |5 - x + x + 6| = |11| = 11

Dấu "=" xảy ra <=> (5 - x)(x + 6) ≥ 0 <=> - 6 ≤ x ≤ 5

Vậy gtnn của |x - 5| + |x + 6| là 11 <=> - 6 ≤ x ≤ 5

b ) Vì (3x - 1)2 ≥ 0

Để |3x - 1| - (3x - 1)2 max <=> (3x - 1)2 min hay (3x - 1)2 = 0 => x = 1/3

=> max |3x - 1| - (3x - 1)= 0 tại x = 1/3

20 tháng 9 2019

1. Câu hỏi của Trần Dương An - Toán lớp 7 - Học toán với OnlineMath

13 tháng 3 2018

a.

M=-3x2y+5

Bài 1 Tớ giải từng bài nhé ! Ko có ý đồ câu điểm.

\(A=4x^2-5xy+xy^2\)

\(B=3x^2+2xy-xy^2\)

Ta có : \(A+B=4x^2-5xy+xy^2+3x^2+2xy-xy^2\)

\(=7x^2-3xy\)

\(A-B=4x^2-5xy+xy^2-3x^2-2xy+xy^2\)

\(=x^2-7xy+2xy^2\)

Bài 2 : N ở đâu ? 

Ta có : \(M+\left(5x^2-2xy\right)=xy^2+xy^3-y^2\)

\(M=xy^2+xy^3-y^2-5x^2+2xy\)

Bài 3 : 

\(A=x^2y-xy^2+xy^2=x^2y\)

\(B=xy+4xy^2-2x-1\)

17 tháng 3 2019

a, (3x2-2xy+y2) + (x2-xy+2y2) - (4x2-y2)

= 3x2-2xy+y2+x2-xy+2y2-4x2+y2

= 4y2-3xy

b, = x2-y2+2xy-x2-xy-2y2+4xy-1

= -3y2+5xy

c, M=5xy+x2-7y2+(2xy-4y)2 = 5xy+x2-7y2+4x2y2-16xy2+16y2 = 5xy+x2+9y2+4x2y2-16xy2

18 tháng 5 2021

Ta có :

 \(A\left(x\right)-B\left(x\right)=3x^3y^4-2xy^2-5xy-1-3x^3y^4+2xy^2+xy+4\)

\(=-4xy+3\)bậc 2 

\(A\left(x\right)+B\left(x\right)=3x^3y^4-2xy^2-5xy-1+3x^3y^4-2xy^2-xy-4\)

\(=6x^3y^4-4xy^2-6xy-5\)bậc 7