Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3x+y=1
y^2=1-6x+9x^2
a) M=12(x^2-2.1/4x+1/16)+1-12/16
GTNN=1-3/4=1/4 khi x=1/4=>y=1/4
b) N=xy=x(1-3x)=-3x^2+x=-3(x^2-2.1/6x+1/36)+3/36
GTLN =1/12 khi x=1/6 ;y=1/2
Ta có :
\(A\left(x\right)-B\left(x\right)=3x^3y^4-2xy^2-5xy-1-3x^3y^4+2xy^2+xy+4\)
\(=-4xy+3\)bậc 2
\(A\left(x\right)+B\left(x\right)=3x^3y^4-2xy^2-5xy-1+3x^3y^4-2xy^2-xy-4\)
\(=6x^3y^4-4xy^2-6xy-5\)bậc 7
- 3x2y(-2)xy = -6x3y2. Bậc của đơn thức vừa thu đk là bậc 3
\(\frac{2}{3}x^3y2\left(-3\right)x^2y-2xy\)= \(-4x^5y^3-2xy\)Bậc của đơn thức vừa tìm đk là bậc 5
- x2y2(-2xy3)z2 = -2x3y5z2 . Bậc của đơn thức vừa tìm đk là bậc 5
1. Câu hỏi của Trần Dương An - Toán lớp 7 - Học toán với OnlineMath
a ) |x - 5| + |x + 6| = |5 - x| + |x + 6|
Áp dụng bđt |a| + |b| ≥ |a + b| ta có :
|5 - x| + |x + 6| ≥ |5 - x + x + 6| = |11| = 11
Dấu "=" xảy ra <=> (5 - x)(x + 6) ≥ 0 <=> - 6 ≤ x ≤ 5
Vậy gtnn của |x - 5| + |x + 6| là 11 <=> - 6 ≤ x ≤ 5
b ) Vì (3x - 1)2 ≥ 0
Để |3x - 1| - (3x - 1)2 max <=> (3x - 1)2 min hay (3x - 1)2 = 0 => x = 1/3
=> max |3x - 1| - (3x - 1)2 = 0 tại x = 1/3
a ) |x - 5| + |x + 6| = |5 - x| + |x + 6|
Áp dụng bđt |a| + |b| ≥ |a + b| ta có :
|5 - x| + |x + 6| ≥ |5 - x + x + 6| = |11| = 11
Dấu "=" xảy ra <=> (5 - x)(x + 6) ≥ 0 <=> - 6 ≤ x ≤ 5
Vậy gtnn của |x - 5| + |x + 6| là 11 <=> - 6 ≤ x ≤ 5
b ) Vì (3x - 1)2 ≥ 0
Để |3x - 1| - (3x - 1)2 max <=> (3x - 1)2 min hay (3x - 1)2 = 0 => x = 1/3
=> max |3x - 1| - (3x - 1)2 = 0 tại x = 1/3
\(a,A=\left(\frac{-3}{4}x^4y\right)\left(\frac{4}{3}x^2y^3\right)\)
\(\Rightarrow A=\left(\frac{-3}{4}.\frac{4}{3}\right)\left(x^4x^2\right)\left(yy^3\right)\)
\(\Rightarrow A=-x^6y^4\)
BẬC CỦA ĐƠN THỨC LÀ 10.
\(B=-x^2y^3\left(-2xy^2\right)^2\)
\(B=-x^2y^3.4x^2y^4\)
\(B=\left(-1.4\right)\left(x^2x^2\right)\left(y^3y^4\right)\)
\(B=-4x^4y^7\)
BẬC CỦA ĐƠN THỨC LÀ 11.
a, A=\(\left(2x^2y-4xy^3\right)-\left(3x^2y-2xy^3\right)\)
= \(2x^2y-2xy^3-3x^2y+2xy^3\)
= \(2x^2y-3x^2y-2xy^3+2xy^3\)
=\(-1x^2y-0\)
=\(-1x^2y\)
Bn tự làm tiếp nhé
a) Áp dụng BĐT Bunhia ta có:
\(\left(3+1\right)\left(3x^2+y^2\right)\ge\left(3x+y\right)^2\)
<=> \(3x^2+y^2\ge3^2:4=\dfrac{9}{4}\)
=> Dấu = xảy ra <=> \(\left\{{}\begin{matrix}3x+y=3\\x=y\end{matrix}\right.\) <=> \(x=y=\dfrac{3}{4}\)
b) Ta có: \(3x+y=3\) => \(y=3-3x\) (1)
Thay (1) vào N ta được:
N = \(2.\left(3-3x\right)x\) = \(6x-6x^2\) = \(-6\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{2}\)
= \(-6\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{2}\) \(\le\) \(\dfrac{3}{2}\)
=> Dấu = xảy ra <=> \(\left\{{}\begin{matrix}y=3-3x\\x=\dfrac{1}{2}\end{matrix}\right.\) <=> \(x=\dfrac{1}{2};y=\dfrac{3}{2}\)