Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Trên cùng một nửa mặt phẳng bờ chứa tia Ox, ta có : \(\widehat{xOy}< \widehat{xOz}\left(70^o< 140^o\right)\)
=> Tia Oy nằm giữa hai tia Ox và Oz
\(\Rightarrow\widehat{xOy}+\widehat{yOz}=\widehat{xOz}\)
\(\Rightarrow70^o+\widehat{yOz}=140^o\)
\(\Rightarrow\widehat{yOz}=140^o-70^o\)
\(\Rightarrow\widehat{yOz}=70^o\)
b) Vì tia Ot là tia đối của tia Oz
\(\Rightarrow\widehat{zOt}=180^o\)
Trên cùng một nửa mặt phẳng bờ chứa tia Ox, ta có : \(\widehat{yOz}< \widehat{zOt}\left(70^o< 180^o\right)\)
=> Tia Oy nằm giữa hai tia Ot và Oz
\(\Rightarrow\widehat{zOy}+\widehat{yOt}=\widehat{zOt}\)
\(\Rightarrow70^o+\widehat{yOt}=180^o\)
\(\Rightarrow\widehat{yOt}=180^o-70^o\)
\(\Rightarrow\widehat{yOt}=110^o\)
a) Trên nửa mặt phẳng bờ chứa tia Ox ta có: xOy xOz 40 ; 80 . o o
Vì 40 80 o o nên tia Oy nằm giữa hai tia Ox và Oz.
Suy ra xOy yOz xOz
Thay số, ta có: 40 80 80 40 40 . o o o o o yOz yOz
Ta có 40 ; 40 40 . o o o xOy yOz xOy yOz
Vậy xOy yOz .
b)
Cách 1:
Ta có tia Oy nằm giữa hai tia Ox và Oz và xOy yOz (chứng minh câu a).
Do đó tia Oy là tia phân giác của góc xOz.
Cách 2:
Ta có 1 1 .80 40 .
2 2
o o xOy yOz xOz Do đó tia Oy là tia phân giác của góc xOz.
c) Vì yOt kề bù với xOy nên 180o yOt xOy
Thay số, ta có: yOt yOt 40 180 180 40 140 . o o o o o
Vậy 140 .o
a) Góc \(\widehat{xOt}\)kề bù với \(\widehat{yOt}\)nên:
\(\widehat{xOt}=180^o+\widehat{yOt}=180^o-60^o=120^o\)
Trên cùng nửa mặt phẳng bờ chứa tia Ox có: \(\widehat{xOz}< \widehat{xOt}\)
=> Tia Oz nằm giữa 2 tia Ox và Ot
b) Có tia Oz nằm giữa 2 tia Ox và Ot
=> \(\widehat{xOz}+\widehat{zOt}=\widehat{xOt}\)
=> \(\widehat{tOz}=\widehat{xOt}-\widehat{xOz}=120^o-40^o=80^o\)
c) Nếu \(\alpha+\beta=180^o\)thì \(\widehat{zOt}=180^o-\left(\alpha+\beta\right)\)
Nếu \(\alpha+\beta>180^o\)thì \(\widehat{zOt}=\left(\alpha+\beta\right)-180^o\)
\(a.\) \(\widehat{xOz}\)kề bù với \(\widehat{zOy}\)
Vì \(\widehat{xOz}\)kề bù với \(\widehat{zOy}\) suy ra \(\widehat{xOz}+\widehat{zOy}=180^0\)
\(\Rightarrow\) \(50^0+\widehat{zOy}=180^0\)
\(\Rightarrow\) \(\widehat{zOy}=180^0-50^0=130^0\)
\(b.\)Trên cùng một nửa mặt phẳng bờ là tia \(Oy\)
có \(\widehat{zOy}>\widehat{tOy}\) ( vì \(130^0>65^0\))
nên tia \(Ot\)nẳm giữa 2 tia \(Oy\)và \(Oz\)
\(c.\)Ta có: \(\widehat{xOz}+\widehat{zOt}+\widehat{tOy}=180^0\) \(\Rightarrow\) \(50^0+\widehat{zOt}+65^0=180^0\)
\(\Rightarrow\) \(\widehat{zOt}=65^0\)
\(d.\) Ta thấy tia \(Ot\)nẳm giữa 2 tia \(Oy\)và \(Oz\)
và \(\widehat{zOt}=\widehat{tOy}=\frac{\widehat{zOy}}{2}=65^0\)
nên tia \(Ot\)la2 tia phân giác của \(\widehat{zOy}\)
\(\text{a) Trên cùng 1 nửa mặt phẳng bờ chứa tia Ox có}\)\(\widehat{xOy}< \widehat{xOz}\) \(\left(65< 130\right)\)
\(\Rightarrow\text{ Oy nằm giữa Ox và Oz}\)
b) \(\text{Do Oy nằm giữa Ox và Oz }\)
\(\Rightarrow\widehat{xOy}+\widehat{yOz}=\widehat{xOz}\Rightarrow\widehat{xOz}-\widehat{xOy}=\widehat{yOz}\left(1\right)\)
mà \(\widehat{xOy}=65^0;\widehat{xOz}=130^0\left(2\right)\)
\(\text{Từ (1) và (2)}\)\(\Rightarrow\)\(\widehat{yOz}=130^0-65^0=65^0\)
\(c.\)
Ta thấy \(\widehat{xOy}=65^0;\widehat{yOz}=65^0\)
\(\Rightarrow\widehat{xOy}=\widehat{yOz}\)
\(\text{d}.\)\(\widehat{yOm}+\widehat{xOy}=180^0\) \(\text{(kề bù)}\)
\(\Rightarrow\widehat{yOm}=\widehat{180^0}-\widehat{xOy}\left(3\right)\)
\(\text{ mà }\)\(\widehat{xOy}=65^0\)
\(\Rightarrow\widehat{yOm}=180^0-65^0=125^0\)
\(\widehat{xOm}+\widehat{yOm}=180^0\) \(\text{(kề bù)}\)
\(\Rightarrow\widehat{yOm}=180^0-\widehat{xOm}\)
\(\text{mà }\)\(\widehat{xOm}=80^0\)
\(\Rightarrow\widehat{yOm}=100^0\)
giải
a / do góc xoz = 20 độ
góc yoz =xoy-xoz
= 110-20=90
b/ vid om là phân gics của yoz => zom=yom
=> xom=xoz+zom=20+45=65 độ
c/ đg kính bn cm cậu
a) góc zOx
góc yOz
góc xOy
b)ta có \(\widehat{yOt}=\widehat{zOy}+\widehat{zOt}>\widehat{zOy}\) O z y x t
phần b) là c) ak