Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tỉ số của b và c là 4/9 = 8/18
Xem a bằng 3 phần; b bằng 8 phần; c bằng 18 phần
Tỉ số của a và c là: 3/18 = 1/6
0,abc = \(\frac{1}{a+b+c}\)
abc = \(\frac{1000}{a+b+c}\)
abc là số có 3 chữ số nên a + b + c > 11
1000 chia hết cho 10, 8, 4, 2
1000 : 10 = 100 , 100 có chữ số 0 trùng nhau không khả thi
1000 : 8 = 250 nên abc = 125 và a = 1; b = 2 và c= 5 khả thi
1000 : 4 = 250; 2 + 5 + 0 = 7; 1000 : 7 = ??? không khả thi
1000 : 2 = 500; 500 có chữ số 0 trùng nhau không khả thi
Vậy a = 1; b = 2; c = 5
bài giải :
0,a+0,0b +0,00c = 1/a + b +c
,abc = 1/ a + b +c
abc/1000 = 1/ a + b + c
abc/1000 = abc / abc* ( a+b+c )
hay abc *( a+b+c ) = 1000
ta co :
1000 = 500* : 1000 = 250*4 : 100 = 200*5
1000 = 125*8 ; 1000 = 100*10
vi phai chon a,b,c khac nhau va khac 0 nen ta chi xet truong hop :
hay abc = 125*8
vay : abc* ( a+b+c ) = 125*8
hay abc = 125 : a+b+c = 8
vậy a = 1 , b = 2 , c= 5
thay vao de bai ta duoc :
0,1 + 0,02 + 0,005 = 1/1+2+5
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc}{abc}+\frac{ac}{abc}+\frac{ab}{abc}=\frac{bc+ac+ab}{abc}\)
Vì \(\frac{bc+ac+ab}{abc}\)= 1 nên bc + ac + ab = abc. Suy ra a = 1 thì b = 2, c = 3 hoặc b = 3, c = 2; a = 2 thì b = 1, c = 3 hoặc b = 3, c = 1; a = 3 thì b = 2, c = 1 hoặc b = 1, c = 2
Ta có:
\(\frac{a}{b}\)của \(b=\frac{a}{b}.b\)
Mà \(\frac{a}{b}.b=\frac{ab}{b}=a\)
Vậy \(\forall b\ne0\Leftrightarrow\frac{a}{b}\) của \(b=a\)(Đpcm)
\(A=\frac{abc}{a+b+c}=\frac{100a+10b+c}{a+b+c}=\frac{\left(a+b+c\right)+99a+9b}{a+b+c}=1+9.\frac{11a+b}{a+b+c}\)
A nhỏ nhất \(\Rightarrow\frac{11a+b}{a+b+c}\) nhỏ nhất => c lớn nhất => c = 9
Khi đó \(A=1+9.\frac{11a+b}{a+b+9}=1+9.\frac{a+b+9+10a-9}{a+b+9}=1+9+9.\frac{10a-9}{a+b+9}\)
Ta có \(10a-9\ge10.1-9>0\)
A nhỏ nhất \(\Rightarrow\frac{10a-9}{a+b+9}\) nhỏ nhất => b lớn nhất => b = 9
Khi đó: \(A=10+9.\frac{10a-9}{a+9+9}=10+9.\frac{10\left(a+18\right)-9-10.18}{a+18}=10+90-9.\frac{189}{a+18}\)
A nhỏ nhất => \(-9.\frac{189}{a+18}\)nhỏ nhất => \(\frac{189}{a+18}\) lớn nhất => a nhỏ nhất => a = 1
Vậy: A nhỏ nhất khi a = 1; b = c = 9.
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
\(\Rightarrow\frac{a+b+c}{b+c+a+c+a+b}\)
\(=\frac{a+b+c}{2\left(a+b+c\right)}\)
\(=\frac{1}{2}\)
\(\Rightarrow\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}=\frac{1}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{b+c}\)=\(\frac{b}{a+c}\)=\(\frac{c}{a+b}\)=\(\frac{a+b+c}{2.\left(a+b+c\right)}\)= \(\frac{1}{2}\)
=> \(\frac{a}{b+c}\)=\(\frac{b}{a+c}\)=\(\frac{c}{a+b}\)=\(\frac{1}{2}\)
T i c h cho mình nha