Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài
\(a+2⋮5;b+2⋮5;c+3⋮5\)
\(\Rightarrow a+2+b+2+c+3=\left(a+b+c+2\right)+5⋮5\)
\(\Rightarrow a+b+c+2⋮5\Rightarrow\left(a+b+c\right)\) không chia hết cho 5
cho 3 so tu nhien a , b , c mình chỉ cho 3 so tu nhien nho thoy a = 8 ; b = 13 ; c = 12
a ) (a+b+c) : 5 = (8 + 13 + 12) : 5 = 33 : 5 = 6 ( du 3 )
( a + b - c ) : 5 =(8 + 13 - 12 ) : 5 = 9 : 5 = 2 ( du 1)
(a + c - b) : 5 = ( 8 + 12 - 13 ) : 5 =7 : 5 = 1( du 2)
b)2 so co tong chia het cho 5 co 2 so : 8 + 12 va 13 + 12
2 so co hieu chia het cho 3 la co 1 so : 13 - 8
chuc ban hoc tot minh chi hoc lop 5 thoy sai cho nao may ban sua gium minh nha
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
Đặt a = 5k + 3; b = 5q + 3; c = 5x + 2
=> a + b + c = (5k + 3) + (5q + 3) + (5x + 2)
=> a + b + c = (5k + 5q + 5x) + (3 + 3 + 2)
=> a + b + c = 5(k + q + x) + 8 không chia hết cho 5 (ĐPCM)