Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left(x^2+y^2+z^2\right)\left(1^2+1^2+1^2\right)\le\left(x.1+y.1+z.1\right)^2\) (bđt Bunhiacopxki)
\(\Leftrightarrow x^2+y^2+z^2\le\frac{\left(x+y+z\right)^2}{3}\) hay \(1\le\frac{\left(x+y+z\right)^2}{3}\)
\(\Rightarrow\left(x+y+z\right)^2\ge3\Rightarrow x+y+z\ge\sqrt{3}\) (do x;y;z dương)
Áp dụng bđt AM - GM ta có :
\(\frac{xy}{z}+\frac{yz}{x}\ge2\sqrt{\frac{xy}{z}.\frac{yz}{x}}=2y\)
\(\frac{xy}{z}+\frac{xz}{y}\ge2\sqrt{\frac{xy}{z}.\frac{xz}{y}}=2x\)
\(\frac{yz}{x}+\frac{xz}{y}\ge2\sqrt{\frac{yz}{x}.\frac{xz}{y}}=2z\)
Cộng vế với vế ta được :
\(2C\ge2\left(x+y+z\right)=2\sqrt{3}\Rightarrow C\ge\sqrt{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)
Đức Hùng hình như áp dụng sai ( ngược dấu ) BĐT Bunhiacopxki rồi
Ta có \(x^2+y^2+z^2+2\left(xy+yz+zx\right)=\left(x+y+z\right)^2=4\Rightarrow+xy+yz+zx=-7\)
vì \(x+y+z=2\Rightarrow z-1=1-x-y\Rightarrow\frac{1}{xy+z-1}=\frac{1}{xy+1-x-y}=\frac{1}{\left(x-1\right)\left(y-1\right)}. \)
Suy ra \(S=\frac{1}{\left(x-1\right)\left(y-1\right)}+\frac{1}{\left(y-1\right)\left(z-1\right)}+\frac{1}{\left(z-1\right)\left(x-1\right)}. \)
\(\frac{z-1+x-1+y-1}{\left(x-1\right)\left(y-1\right)\left(z-1\right)}=\frac{x+y+z-3}{xyz-xy-yz-zx+x+y+z-1}=-\frac{1}{7}\)
Lời giải:
Áp dụng BĐT AM-GM ta có:
\(4x^2+4y^2\geq 2\sqrt{16x^2y^2}=8xy\)
\(32x^2+\frac{z^2}{2}\geq 2\sqrt{16x^2z^2}=8xz\)
\(32y^2+\frac{z^2}{2}\geq 2\sqrt{16y^2z^2}=8yz\)
Cộng theo vế thu được:
\(36x^2+36y^2+z^2\geq 8(xy+yz+xz)\)
\(\Leftrightarrow A\geq 8(xy+yz+xz)=8\)
Vậy \(A_{\min}=8\). Dấu bằng xảy ra khi \(x=y=\sqrt{\frac{1}{17}}; z=\frac{8}{\sqrt{17}}\)
Ta có :
\(B+8=xy+yz+2zx+x^2+y^2+z^2\)
\(=\left(x+z+\frac{y}{2}\right)^2+\frac{3}{4}y^2\ge0\)
Do đó : \(B\ge-8\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}y=0\\x^2=z^2=4\end{cases}}\)
ミ★ Đạt ★彡 làm đúng rồi nha.
Nhưng đoạn cuối bạn cần bổ sung là khi y = 0; x= -2 thì z=2 hoặc khi x=2 ;z=-2;y=0.
(x;z phải ngược dấu nha)
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=1+2\left(ab+bc+ca\right).\)
\(\Rightarrow A=\left(ab+bc+ca\right)=\frac{1}{2}\left(a+b+c\right)^2-\frac{1}{2}\ge-\frac{1}{2}\)với mọi a,b,c
Vậy A nhỏ nhất bằng -1/2 khi a+b+c =0
Ta có : \((x-\dfrac{1}{3})^2+(y-\dfrac{1}{3})^2+(z-\dfrac{1}{3})^2>=0\)
\(=>x^2+y^2+z^2-\dfrac{2}{3}(x+y+z)+\dfrac{1}{3}\ge0\)
\(=>x^2+y^2+z^2+\dfrac{1}{3}\ge\dfrac{2}{3}(x+y+z)\)
\(=>1+\dfrac{1}{3}=\dfrac{4}{3}\ge\dfrac{2}{3}(x+y+z)\)
\(=>x+y+z\le2\)
Do đó : \((a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)=1+2(ab+bc+ca).\)
\(=>A=(ab+ac+bc)=\dfrac{1}{2}(a+b+c)^2-\dfrac{1}{2}\le\dfrac{1}{2}.2^2-\dfrac{1}{2}=\dfrac{3}{2}\)