K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2019

\(\frac{y+1}{4x^2+1}=1-\frac{4x^2-y}{4x^2+1}\ge1-\frac{4x^2-y}{2\sqrt{4x^2.1}}=1+\frac{y}{4x}-x;\)

Tương tự ta được \(\frac{1+z}{4y^2+1}\ge1+\frac{z}{4y}-y\)\(\frac{1+x}{4z^2+1}\ge1+\frac{x}{4z}-z\)

cộng 3 bất đăng thức trên ta được p \(\ge3+\frac{1}{4}\left(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}\right)-\left(x+y+z\right)=\frac{3}{2}+\frac{1}{4}\left(\frac{y}{x}+\frac{z}{y}+\frac{x}{z}\right)\ge\)\(\frac{3}{2}+\frac{1}{4}.3\sqrt[3]{\frac{y}{x}.\frac{z}{y}.\frac{x}{z}}=\frac{9}{4}\)

p min khi x=y=z = 1/2

22 tháng 7 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Rightarrow x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}=3\)

Khi đó \(\frac{1}{4x^2+y^2+z^2}=\frac{1}{3x^2+x^2+y^2+z^2}\le\frac{1}{3x^2+3}\)

Viết lại BĐT cần chứng minh như sau:

\(\frac{1}{3x^2+3}+\frac{1}{3y^2+3}+\frac{1}{3z^2+3}\le\frac{1}{2}\)

\(\Leftrightarrow\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}\le\frac{3}{2}\)

Ta có BĐT phụ \(\frac{1}{x^2+1}\le-\frac{1}{2}x+1\)

\(\Leftrightarrow-\frac{x\left(x-1\right)^2}{2\left(x^2+1\right)}\ge0\) *luôn đúng*

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{1}{y^2+1}\le-\frac{1}{2}y+1;\frac{1}{z^2+1}\le-\frac{1}{2}z+1\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\le-\frac{1}{2}\left(x+y+z\right)+3=-\frac{3}{2}+3=\frac{3}{2}=VP\)

Xảy ra khi x=y=z=1

22 tháng 7 2017

Cho mih hỏi bđt phụ đó là sao, có thể CM giùm mih đc hok

25 tháng 5 2018

\(x^4y+x^2y-x^2y=x^2y\left(x^2+1\right)-x^2y.\)

\(\hept{\begin{cases}\frac{x^2y\left(x^2+1\right)-x^2y}{\left(x^2+1\right)}=x^2y-\frac{x^2y}{\left(x^2+1\right)}\\\frac{y^2z\left(y^2+1\right)-y^2z}{\left(y^2+1\right)}=y^2z-\frac{y^2z}{\left(y^2+1\right)}\\\frac{z^2x\left(z^2+1\right)-z^2x}{\left(z^2+1\right)}=z^2x-\frac{z^2x}{\left(z^2+1\right)}\end{cases}}Vt\ge x^2y+y^2z+z^2x-\left(\frac{x^2y}{x^2+1}+\frac{y^2z}{y^2+1}+\frac{z^2x}{z^2+1}\right)\)

\(\hept{\begin{cases}x^2+1\ge2x\\y^2+1\ge2y\\z^2+1\ge2z\end{cases}\Leftrightarrow\hept{\begin{cases}-\frac{x^2y}{x^2+1}\ge\frac{x^2y}{2x}=\frac{xy}{2}\\\frac{y^2z}{2y}=\frac{yz}{2}\\\frac{z^2x}{2z}=\frac{xz}{2}\end{cases}\Leftrightarrow}VT\ge x^2y+y^2z+z^2x-\left(\frac{xy+yz+zx}{2}\right)}\)

\(x^2y+y^2z+z^2x\ge3\sqrt[3]{x^3y^3z^3}=3\)

\(VT\ge3-\frac{\left(xy+yz+zx\right)}{2}\)

t chỉ làm dc đến đây thôi :))

27 tháng 5 2018

Từ \(VT\ge x^2y+y^2z+z^2x-\left(\frac{xy+yz+zx}{2}\right)\)ta có:

\(x^2y+x^2y+y^2z=x^2y+x^2y+\frac{y}{x}\ge3xy\)(áp dụng BĐT Cauchy)

Tương tự : \(y^2z+y^2z+z^2x\ge3yz\);   \(z^2x+z^2x+x^2y\ge3zx\)

Cộng vế theo vế suy ra : \(3\left(x^2y+y^2z+z^2x\right)\ge3\left(xy+yz+zx\right)\)

\(\Leftrightarrow x^2y+y^2z+z^2x\ge xy+yz+zx\)

\(\Leftrightarrow VT\ge\frac{xy+yz+zx}{2}\ge\frac{3\sqrt[3]{x^2y^2z^2}}{2}=\frac{3}{2}\)

Dấu '=' xảy ra khi x = y = z = 1

28 tháng 5 2017

\(\sum\dfrac{x^4y}{x^2+1}=\sum\dfrac{x^3.\dfrac{1}{z}}{x^2+xyz}=\sum\dfrac{x^2}{z\left(x+yz\right)}=\sum\dfrac{x^2}{xz+1}\)

Áp dụng bất đẳng thức cauchy-schwarz:

\(Vt=\sum\dfrac{x^2}{xz+1}\ge\dfrac{\left(x+y+z\right)^2}{xy+yz+xz+3}\)

mà theo AM-GM: \(xy+yz+xz\ge3\sqrt[3]{x^2y^2z^2}=3\)

hay \(3\le xy+yz+xz\)

do đó \(VT\ge\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)}\ge\dfrac{3\left(xy+yz+zx\right)}{2\left(xy+yz+xz\right)}=\dfrac{3}{2}\)

Dấu = xảy ra khi x=y=z=1

P/s: Câu này khoai

28 tháng 5 2017

đc đc tui AM-GM các kiểu mà ko ra, like

NV
30 tháng 12 2021

\(\sqrt{4x+2\sqrt{x}+1}\le\sqrt{4x+\dfrac{1}{2}\left(2^2+x\right)+1}=\sqrt{\dfrac{9x}{2}+3}\)

\(=\dfrac{1}{\sqrt{21}}.\sqrt{21}.\sqrt{\dfrac{9x}{2}+3}\le\dfrac{1}{2\sqrt{21}}\left(21+\dfrac{9x}{2}+3\right)=\dfrac{1}{2\sqrt{21}}\left(\dfrac{9x}{2}+24\right)\)

Tương tự và cộng lại:

\(A\le\dfrac{1}{2\sqrt{21}}\left(\dfrac{9}{2}\left(x+y+z\right)+72\right)=3\sqrt{21}\)

\(A_{max}=3\sqrt{21}\) khi \(x=y=z=4\)

30 tháng 12 2021

\(A=1\sqrt{4x+2\sqrt{x}+1}+1.\sqrt{4y+2\sqrt{y}+1}+1\sqrt{4z+2\sqrt{z}+1}\)

\(\le\sqrt{\left(1+1+1\right)\left(4\left(x+y+z\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3\right)}\)

\(=\sqrt{3.\left[51+\dfrac{4\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}{2}\right]}\)

\(\le\sqrt{3.\left[51+\dfrac{x+y+z+12}{2}\right]}\)

\(=\sqrt{189}\)

Dấu "=" xảy ra <=> x = y = z = 4

14 tháng 7 2018

Bài 1 :

Ta có : \(\dfrac{1}{3a^2+b^2}+\dfrac{2}{b^2+3ab}=\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\)

Theo BĐT Cô - Si dưới dạng engel ta có :

\(\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\ge\dfrac{\left(1+2\right)^2}{3a^2+6ab+3b^2}=\dfrac{9}{3\left(a+b\right)^2}=\dfrac{9}{3.1}=3\)

Dấu \("="\) xảy ra khi : \(a=b=\dfrac{1}{2}\)

16 tháng 6 2018

P= \(2\sqrt{x}+1+2\sqrt{y}+1+2\sqrt{z}+1\)

\(P^2=4\left(x+y+z\right)+3\)

với x+y+z=12 ta có\(P^2=4\cdot12+3=51\)

P=\(\sqrt{51}\)

vậy GTLN của p là \(\sqrt{51}\)

12 tháng 6 2017

thế nào nhỉ ( : 
Từ giả thiết => 1/x +1/y +1/z <= 1 
A/d  BĐT 1/(x +y+z) <= 1/9 ( 1/x + 1/y +1/z )  và 1/(x+y) <= 1/4 ( 1/x +1/y )
=> 1/(4x + y+z) = 1/(x+x + y+x + z+x) <= 1/9 ( 1/2x + 1/(y+x) + 1/(z+x) ) <= 1/9 ( 1/(2x)  + 1/4(1/y +1/x) + 1/4(1/x + 1/z)) 
Tương tự cộng lại và sử dụng 1/x +1/y +1/z <= 1
được P <= 1/6(1/x +1/y +1/z) <= 1/6 ĐPCM.