Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình nghĩ bạn chép sai đề bài
dấu ''='' thứ 2 thay bằng dấu ''+''
ta có
\(\dfrac{19}{x+y}+\dfrac{19}{y+z}+\dfrac{19}{x+z}=\dfrac{133}{10}\)
\(\Rightarrow19\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}\right)=\dfrac{133}{10}\)
\(\Rightarrow\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}=\dfrac{7}{10}\)
lại có
\(\dfrac{7x}{y+z}+\dfrac{7y}{x+z}+\dfrac{7z}{x+y}=\dfrac{133}{10}\)
\(\Rightarrow7\left(\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}\right)=\dfrac{133}{10}\)
\(\Rightarrow\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}=\dfrac{19}{10}\)
\(\Rightarrow\dfrac{x+y+z}{y+z}+\dfrac{x+y+z}{x+z}+\dfrac{x+y+z}{x+y}=\dfrac{49}{10}\)
\(\Rightarrow\left(x+y+z\right)\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}+\dfrac{1}{y+z}\right)=\dfrac{49}{10}\)
\(\Rightarrow\dfrac{7}{10}\left(x+y+z\right)=\dfrac{49}{10}\Rightarrow\left(x+y+z\right)^2=49.\)
Lời giải:
Ta có: \(\frac{19}{x+y}+\frac{19}{y+z}+\frac{19}{z+x}=\frac{133}{10}\)
\(\Rightarrow \frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=\frac{7}{10}(*)\)
Lại có:
\(\frac{7x}{y+z}+\frac{7y}{z+x}+\frac{7z}{x+y}=\frac{133}{10}\)
\(\Rightarrow \frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=\frac{19}{10}\)
\(\Rightarrow \frac{x}{y+z}+1+\frac{y}{z+x}+1+\frac{z}{x+y}+1=\frac{19}{10}+3=\frac{49}{10}\)
\(\Leftrightarrow \frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{x+y}=\frac{49}{10}\)
\(\Leftrightarrow (x+y+z)\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{49}{10}(**)\)
Từ \((*);(**)\Rightarrow M=x+y+z=7\)
Lời giải:
Ta có:
\(\frac{19}{x+y}+\frac{19}{y+z}+\frac{19}{z+x}=\frac{133}{10}\)
\(\Leftrightarrow \frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=\frac{7}{10}(*)\)
Và: \(\frac{7x}{y+z}+\frac{7y}{z+x}+\frac{7z}{x+y}=\frac{133}{10}\)
\(\Leftrightarrow \frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=\frac{19}{10}\)
\(\Rightarrow \frac{x}{y+z}+1+\frac{y}{z+x}+1+\frac{z}{x+y}+1=\frac{49}{10}\)
\(\Leftrightarrow \frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{x+y}=\frac{49}{10}\)
\(\Leftrightarrow (x+y+z)\left(\frac{1}{y+z}+\frac{1}{z+x}+\frac{1}{x+y}\right)=\frac{49}{10}(**)\)
Từ \((*); (**)\Rightarrow x+y+z=\frac{49}{10}:\frac{7}{10}=7\)
Vậy $M=7$
\(\dfrac{19}{x+y}+\dfrac{19}{y+z}+\dfrac{19}{x+z}=\dfrac{133}{10}\\ \Rightarrow19.\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}\right)=\dfrac{133}{10}\\ \Rightarrow\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}=\dfrac{7}{10}\)
\(\dfrac{7x}{y+z}+\dfrac{7z}{x+y}+\dfrac{7y}{x+z}=\dfrac{133}{10}\\ \Rightarrow\dfrac{x}{y+z}+\dfrac{z}{x+y}+\dfrac{y}{x+z}=\dfrac{133}{10}:7=\dfrac{19}{10}\\ \Rightarrow\left(\dfrac{x}{y+z}+1\right)+\left(\dfrac{z}{x+y}+1\right)+\left(\dfrac{y}{x+z}+1\right)=\dfrac{49}{10}\\ \Rightarrow\left(x+y+z\right)\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{z+x}\right)=\dfrac{49}{10}\\ \Rightarrow\left(x+y+z\right).\dfrac{7}{10}=\dfrac{49}{10}\\ \Rightarrow x+y+z=7\)
b) Ta có:
\(\dfrac{19}{x+y}=\dfrac{19}{y+z}=\dfrac{19}{z+x}=\dfrac{133}{10}\)
\(\Rightarrow\dfrac{133}{7\left(x+y\right)}=\dfrac{133}{7\left(y+z\right)}=\dfrac{133}{7\left(z+x\right)}=\dfrac{133}{10}\)
\(\Rightarrow7\left(x+y\right)=7\left(y+z\right)=7\left(z+x\right)=10\)
\(\Rightarrow7\left(x+y\right)+7\left(y+z\right)+7\left(z+x\right)=10\)
\(\Rightarrow7\left[2\left(x+y+z\right)\right]=10\)
\(\Rightarrow14\left(x+y+z\right)=10\)
\(\Leftrightarrow x+y+z=\dfrac{5}{7}\)
Ta có: \(\dfrac{x}{19}=\dfrac{y}{12}\Leftrightarrow\dfrac{x}{19}=\dfrac{2y}{24}\) và \(x-2y=10\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{19}=\dfrac{2y}{24}=\dfrac{x-2y}{19-24}=\dfrac{10}{-5}=-2\)
+) \(\dfrac{x}{19}=-2\Rightarrow x=-2.19=-38\)
+) \(\dfrac{2y}{24}=-2\Rightarrow2y=-2.24=-48\Rightarrow y=-48:2=-24\)
Câu 1: Mình chỉnh sửa lại đầu bài của bạn nha. Không biết có đúng không. Nếu để đầu bài như bạn thì mình không làm ra được. Mog góp ý !!!!
Áp dụng t/c DTSBN ta có:
\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=x+y+z\)
\(=\dfrac{x+y+x}{y+z+1+x+z+1+x+y-2}=\dfrac{x+y+x}{2x+2y+2z}=\dfrac{1}{2}\)
=>\(\dfrac{x}{y+z+1}=\dfrac{1}{2}\left(1\right)\)
=>\(\dfrac{y}{x+z+1}=\dfrac{1}{2}\left(2\right)\)
=>\(\dfrac{z}{x+y-2}=\dfrac{1}{2}\left(3\right)\)
=> x+y+z = 1/2 (4)
Ta có : Từ (1) => 2x = y+z+1 kết hợp (4)
=> 2x = 1/2-x+1
=> 3x = 3/2 => x=1/2
Ta có: Từ (2) => 2y = x+z+1
=> 2y + y = x+y+z+1
=> 3y = 1/2+1 (theo 4) => 3y=3/2
=> y=1/2
Ta có : Từ (4) => x+y+z=1/2
=>1/2 + 1/2 +z = 1/2
=> z=-1/2
Vậy ( x;y;z)=(1/2;1/2;-1/2)
tìm x,y,z nha m.n