K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2016

Biến đổi tương đương, dễ dàng chứng minh Bđt:

\(\frac{4}{\left(x+y\right)^2}+\frac{4}{\left(x+z\right)^2}\ge\frac{4}{x^2+yz}\)\(\Rightarrow VT\ge\frac{x^2}{yz}+\frac{4}{x^2+yz}\)

Từ \(3y^2z^2+x^2=2\left(x+yz\right)\) ta có:

\(3y^2z^2+x^2\le x^2+1+2yz\)

\(\Rightarrow3y^2z^2-2yz-1\le0\Rightarrow yz\le1\)

Khi đó:

\(VT\ge x^2+\frac{4}{x^2+1}=\left(x^2+1\right)+\frac{4}{x^2+1}-1\ge3\)

Dấu = khi x=y=z=1

23 tháng 8 2021

vì x2+y2+z2=1 mà x2+y2+z2>=xy+yz+xz suy ra 1>= xy+yz+xz

x2+y2+z2=1 suy ra (x-y)2=1-2xy-z2 ,(y-z)2=1-2yz-x2,(x-z)2=(x-z)2=1-2xz-y2

\(\sqrt{3}+\frac{1}{2\sqrt{3}}[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2]=\)

\(\sqrt{3}+\frac{1}{2\sqrt{3}}[3-\left(2xy+z^2+2yz+x^2+2xz+y^2\right)]\)(do (x-y)2=1-2xy-z2(y-z)2=1-2yz-x2,(x-z)2=(x-z)2=1-2xz-y2)

theo bdt cosi ta có:

\(\sqrt{3}+\frac{1}{2\sqrt{3}}[3-\left(2xy+z^2+2yz+x^2+2xz+y^2\right)]\)

\(\le\sqrt{3}+\frac{1}{2\sqrt{3}}[3-\left(2z\sqrt{2xy}+2y\sqrt{2xz}+2x\sqrt{2yz}\right)]\)

\(\le\sqrt{3}+\frac{1}{2\sqrt{3}}[3-3\sqrt[3]{\left(2z\sqrt{2xy}.2y\sqrt{2xz}.2x\sqrt{2yz}\right)}\)

\(=\sqrt{3}+\frac{\sqrt{3}}{2}[1-2\sqrt{2}.\sqrt[3]{xyz^2}]\)\(=\sqrt{3}\left(1+\frac{1}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\right)=\sqrt{3}\left(\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\right)\)

suy ra 

\(\frac{x+y+z}{xy+yz+xz}\ge3.\sqrt[3]{xyz}\left(doxy+yz+xz\le1\right)\)

ta giả sử:

\(3\sqrt[3]{xyz}\ge\sqrt{3}\left(\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\right)\Leftrightarrow\sqrt{3}\ge\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\) mà \(\sqrt{3}>\frac{3}{2}\)

suy ra \(\frac{3}{2}\ge\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\)(luôn đúng) suy ra điều giả sử trên là đúng

hay \(3\sqrt[3]{xyz}\ge\sqrt{3}\left(\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\right)\)

mà \(\frac{x+y+z}{xy+yz+xz}\ge3.\sqrt[3]{xyz}\),\(\sqrt{3}+\frac{1}{2\sqrt{3}}[3-\left(2xy+z^2+2yz+x^2+2xz+y^2\right)]\)\(\le\sqrt{3}\left(\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\right)\)

suy ra \(\frac{x+y+z}{xy+yz+xz}\ge\)\(\sqrt{3}+\frac{1}{2\sqrt{3}}[3-\left(2xy+z^2+2yz+x^2+2xz+y^2\right)]\)

suy ra \(\frac{x+y+z}{xy+yz+xz}\ge\)\(\sqrt{3}+\frac{1}{2\sqrt{3}}[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2]\)(đpcm)

em mới có lớp 8, nếu em làm sai cho em xin lỗi nha anh

23 tháng 8 2021

bạn ơi đk: 1 trong 3 số x,y,z là >=0 còn lại là >0 thì nó vẫn ra điều trên

NV
1 tháng 10 2019

\(H\ge\frac{\left(x+y\right)^2}{2xy\left(x+y^3\right)}+\frac{\left(y+z\right)^2}{2yz\left(y+z\right)}+\frac{\left(z+x\right)^2}{2zx\left(z+x\right)}=\frac{1}{2xy\left(x+y\right)}+\frac{1}{2yz\left(y+z\right)}+\frac{1}{2zx\left(z+x\right)}\)

\(\Rightarrow H\ge\frac{9}{2}.\frac{1}{xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)}\)

Ta chứng minh BĐT phụ sau:

\(x^3+y^3\ge xy\left(x+y\right)\)

\(\Leftrightarrow x^3-x^2y+y^3-xy^2\ge0\)

\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng)

Vậy BĐT phụ được chứng minh

Hoàn toàn tương tự: \(y^3+z^3\ge yz\left(y+z\right)\); \(z^3+x^3\ge zx\left(z+x\right)\)

\(\Rightarrow H\ge\frac{9}{2}.\frac{1}{x^3+y^3+y^3+z^3+z^3+x^3}=\frac{9}{4\left(x^3+y^3+z^3\right)}=\frac{9}{32}\)

\(H_{min}=\frac{9}{32}\) khi \(x=y=z=\frac{2\sqrt{3}}{3}\)

1 tháng 10 2019

cái dấu = đầu tiên em ko hiểu lắm,

NV
4 tháng 1 2020

\(VT=\sum\frac{x^2}{x^4+yz}\le\sum\frac{x^2}{2x^2\sqrt{yz}}=\frac{1}{2}\sum\frac{1}{\sqrt{yz}}\le\frac{1}{4}\sum\left(\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Rightarrow VT\le\frac{1}{2}\left(\frac{xy+yz+zx}{xyz}\right)\le\frac{1}{2}\left(\frac{x^2+y^2+z^2}{xyz}\right)=\frac{3}{2}\)

Dấu "=" xảy ra khi \(x=y=z=1\)

22 tháng 5 2019

Áp dụng BĐT Cô-si,ta có :

x4 + yz \(\ge\)\(2\sqrt{x^4yz}=2x^2\sqrt{yz}\)\(y^4+xz\ge2y^2\sqrt{xz}\)\(z^4+xy\ge2z^2\sqrt{xy}\)

\(\Rightarrow\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\le\frac{x^2}{2x^2\sqrt{yz}}+\frac{y^2}{2y^2\sqrt{xz}}+\frac{z^2}{2z^2\sqrt{xy}}=\frac{1}{2\sqrt{yz}}+\frac{1}{2\sqrt{xz}}+\frac{1}{2\sqrt{xy}}\)

CM : x + y + z \(\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)

\(\frac{x^2}{x^4+yz}+\frac{y^2}{y^4+xz}+\frac{z^2}{z^4+xy}\le\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}.\frac{yz+xz+xy}{xyz}=\frac{1}{2}.\frac{3xyz}{xyz}=\frac{3}{2}\)

31 tháng 5 2020

Áp dụng BĐT Cauchy cho các cặp số dương, ta có: \(\Sigma\frac{x^2}{x^4+yz}\le\Sigma\frac{x^2}{2x^2\sqrt{yz}}=\Sigma\frac{1}{2\sqrt{yz}}\)

\(\le\frac{1}{4}\Sigma\left(\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=\frac{1}{2}.\frac{xy+yz+zx}{xyz}\le\frac{1}{2}.\frac{x^2+y^2+z^2}{xyz}=\frac{1}{2}.\frac{3xyz}{xyz}=\frac{3}{2}\)

Đẳng thức xảy ra khi x = y = z = 1

7 tháng 3 2016

Đề sai rồi kìa 

7 tháng 3 2016

sai đâu sử cho đúng