K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2016

Ta có \(1=a+b+c\ge3\sqrt[3]{abc}\)

\(\Leftrightarrow\frac{1}{3}\ge\sqrt[3]{abc}\)

Theo đề bài ta có

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}\)

\(\ge\frac{3\sqrt[3]{a^2b^2c^2}}{abc}=\frac{3}{\sqrt[3]{abc}}\ge9\)

28 tháng 3 2018

Áp dụng BĐT Cauchy-Schwarz dưới dạng phân số ta có

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}\)

<=>\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\) (vì a+b+c=1) (đpcm)

28 tháng 3 2018

Cách khác dùng AM-GM

Áp dụng bđt AM-GM cho 3 số không âm ta được:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{a}\cdot\dfrac{1}{b}\cdot\dfrac{1}{c}}=3\cdot\dfrac{1}{\sqrt[3]{abc}}\)

Tiếp tục áp dụng bđt AM-GM cho 3 số không âm ta được:

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\Rightarrow\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot\dfrac{3}{\sqrt[3]{abc}}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\)(đpcm)

28 tháng 8 2016

3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c > 0

3 tháng 5 2019

1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)

                   \(\left(b+c\right)^2\ge4b>0\)

                    \(\left(a+c\right)^2\ge4c>0\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)

Mà abc=1

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)     

25 tháng 1 2017

1/a+1/b+1/c >= 9

<=>(1/a+1/b+1/c)(a+b+c) >= 9(a+b+c)=9 (do a+b+c=1)

<=>3+(a/b+b/a)+(b/c+c/b)+(c/a+a/c) 

áp dụng bđt côsi cho các số dương a/b,b/a,b/c,c/b,c/a,a/c 

a/b+b/a >= 2.căn a/b . b/a =2 

Tương tự b/c+c/b >= 2,c/a+a/c >= 2

=>3+(a/b+b/a)+(b/c+c/b)+(c/a+a/c) >= 3+2+2+2=9 

=>đpcm

30 tháng 4 2017

(a+b)^2>=4ab

1>=4ab

ab<=1/4

a^3+b^3=(a+b)(a^2-ab+b^2)=a^2-ab+b^2=a^2+2ab+b^3-3ab

=(a+b)^2-3ab=1-3ab>=1-3.1/4=1/4

suy ra đpcm 

18 tháng 2 2016

phần a nhé

1/a+1/b+1/c=(a+b+c)(1/a+1/b+1/c)=3+(a/b+b/a)+(b/c+c/b)+(a/c+c/a)            do a+b+c=1

áp dụng bdt cosi cho các  so dương a/b,b/a,a/c,c/a,b/c,c/b

a/b+b/a >=2

b/c+c/b>=2

a/c+c/a>=2

cộng hết vào suy ra 1/a+1/b+1/c >=9       

15 tháng 7 2019

1) Đề sai, thử với x = -2 là thấy không thỏa mãn.

Giả sử cho rằng với đề là x không âm thì áp dụng BĐT Cauchy:

\(A=\)\(\frac{2x}{3}+\frac{9}{\left(x-3\right)^2}=\frac{x-3}{3}+\frac{x-3}{3}+\frac{9}{\left(x-3\right)^2}+2\)

\(A\ge3\sqrt[3]{\frac{\left(x-3\right).\left(x-3\right).9}{3.3.\left(x-3\right)^2}}+2=3+2=5>1\)

Không thể xảy ra dấu đẳng thức.

22 tháng 1 2018

Với x,y,z > 0

Xét : (1/x + 1/y + 1/z).(x+y+z)

>=3 \(\sqrt[3]{\frac{1}{xyz}}\). 3\(\sqrt[3]{xyz}\) = 9

=> 1/x + 1/y + 1/z >= 9/x+y+z = 9/1 = 9

=> ĐPCM

Dấu "=" xảy ra <=> x=y=z=1/3

Tk mk nha

23 tháng 1 2018

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge9\)(đúng với a, b, c dương) 

Áp dụng BĐT trên ta có: 

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=9\)

22 tháng 1 2017

Theo bất đẳng thức Cô-sy ta được:

\(a+b+c\ge3^3\sqrt{abc}\)(1)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3^3\sqrt{\frac{1}{abc}}\)(2)

Nhân (1) (2) vế heo vế ta được

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{1}=9\)

30 tháng 3 2018

biến đổi cách này dễ hiểu hơn nề:))

vì a+b+c=1 nên

\(\frac{1}{a}\)=\(\frac{a+b+c}{a}\)= 1+ \(\frac{b}{a}\)+\(\frac{c}{a}\)

\(\frac{1}{b}\)=\(\frac{a+b+c}{b}\)= 1+ \(\frac{a}{b}\)+\(\frac{c}{b}\)

\(\frac{1}{c}\)=\(\frac{a+b+c}{c}\)= 1+ \(\frac{a}{c}\)+\(\frac{b}{c}\)

ta có \(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)= 1+1+1+(\(\frac{a}{b}\)+\(\frac{b}{a}\))+(\(\frac{a}{c}\)+\(\frac{c}{a}\))+(\(\frac{b}{c}\)+\(\frac{c}{b}\))

ta lại có \(\frac{a}{b}\)+\(\frac{b}{a}\)\(\ge\)\(\Leftrightarrow\)\(\frac{a^2+b^2}{ab}\)\(\ge\)2\(\Leftrightarrow\)\(a^2\)+\(b^2\)\(\ge\)2ab \(\Leftrightarrow\)(a-b)^2\(\ge\)0      luôn đúng

tương tự ta có a/c+c/a >= 2 và b/c+c/b >= 2

vậy 1/a+1/b+1/c>=9