\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2016

Ta có \(1=a+b+c\ge3\sqrt[3]{abc}\)

\(\Leftrightarrow\frac{1}{3}\ge\sqrt[3]{abc}\)

Theo đề bài ta có

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}\)

\(\ge\frac{3\sqrt[3]{a^2b^2c^2}}{abc}=\frac{3}{\sqrt[3]{abc}}\ge9\)

25 tháng 1 2017

1/a+1/b+1/c >= 9

<=>(1/a+1/b+1/c)(a+b+c) >= 9(a+b+c)=9 (do a+b+c=1)

<=>3+(a/b+b/a)+(b/c+c/b)+(c/a+a/c) 

áp dụng bđt côsi cho các số dương a/b,b/a,b/c,c/b,c/a,a/c 

a/b+b/a >= 2.căn a/b . b/a =2 

Tương tự b/c+c/b >= 2,c/a+a/c >= 2

=>3+(a/b+b/a)+(b/c+c/b)+(c/a+a/c) >= 3+2+2+2=9 

=>đpcm

22 tháng 1 2017

Theo bất đẳng thức Cô-sy ta được:

\(a+b+c\ge3^3\sqrt{abc}\)(1)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3^3\sqrt{\frac{1}{abc}}\)(2)

Nhân (1) (2) vế heo vế ta được

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{1}=9\)

30 tháng 3 2018

biến đổi cách này dễ hiểu hơn nề:))

vì a+b+c=1 nên

\(\frac{1}{a}\)=\(\frac{a+b+c}{a}\)= 1+ \(\frac{b}{a}\)+\(\frac{c}{a}\)

\(\frac{1}{b}\)=\(\frac{a+b+c}{b}\)= 1+ \(\frac{a}{b}\)+\(\frac{c}{b}\)

\(\frac{1}{c}\)=\(\frac{a+b+c}{c}\)= 1+ \(\frac{a}{c}\)+\(\frac{b}{c}\)

ta có \(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)= 1+1+1+(\(\frac{a}{b}\)+\(\frac{b}{a}\))+(\(\frac{a}{c}\)+\(\frac{c}{a}\))+(\(\frac{b}{c}\)+\(\frac{c}{b}\))

ta lại có \(\frac{a}{b}\)+\(\frac{b}{a}\)\(\ge\)\(\Leftrightarrow\)\(\frac{a^2+b^2}{ab}\)\(\ge\)2\(\Leftrightarrow\)\(a^2\)+\(b^2\)\(\ge\)2ab \(\Leftrightarrow\)(a-b)^2\(\ge\)0      luôn đúng

tương tự ta có a/c+c/a >= 2 và b/c+c/b >= 2

vậy 1/a+1/b+1/c>=9

30 tháng 4 2017

(a+b)^2>=4ab

1>=4ab

ab<=1/4

a^3+b^3=(a+b)(a^2-ab+b^2)=a^2-ab+b^2=a^2+2ab+b^3-3ab

=(a+b)^2-3ab=1-3ab>=1-3.1/4=1/4

suy ra đpcm 

22 tháng 1 2018

Với x,y,z > 0

Xét : (1/x + 1/y + 1/z).(x+y+z)

>=3 \(\sqrt[3]{\frac{1}{xyz}}\). 3\(\sqrt[3]{xyz}\) = 9

=> 1/x + 1/y + 1/z >= 9/x+y+z = 9/1 = 9

=> ĐPCM

Dấu "=" xảy ra <=> x=y=z=1/3

Tk mk nha

23 tháng 1 2018

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

\(\Leftrightarrow3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge9\)(đúng với a, b, c dương) 

Áp dụng BĐT trên ta có: 

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=9\)

17 tháng 2 2019

\(\frac{1}{a}=\frac{a+b+c}{a}=1+\frac{b}{a}+\frac{c}{a}\)

\(\frac{1}{b}=\frac{a+b+c}{b}=1+\frac{a}{b}+\frac{c}{b}\)

\(\frac{1}{c}=\frac{a+b+c}{c}=1+\frac{a}{c}+\frac{b}{c}\)

Vậy \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)\ge3+2+2+2=9\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}a=b=c\\a+b+c=1\end{cases}}\Rightarrow a=b=c=\frac{1}{3}\)

18 tháng 2 2019

Áp dụng BĐT AM-GM (Cô si) cho hai số dương,ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{3}{\sqrt[3]{abc}}\ge\frac{3}{\frac{a+b+c}{3}}=\frac{9}{a+b+c}=9^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\\a+b+c=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b=c\\a+b+c=1\end{cases}}\Leftrightarrow a=b=c=\frac{1}{3}\)

18 tháng 1 2017

qsaxdcvf

12 tháng 6 2017

Áp dụng bất đẳng thức Cauchy-shwarz dạng Engel ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{1}=9\)

Dấu " = " xảy ra khi \(x=y=z=\frac{1}{3}\)

Vậy...

17 tháng 12 2015

vì a+b+c =1 nên ta đi cm \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
Có \(a+b+c\ge3\sqrt[3]{abc}\) (BĐT Cô si)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\) ( BĐT Cô si)
Nhân vế với vế -> đpcm

17 tháng 12 2015

\(\frac{1^2}{a}+\frac{1^2}{b}+\frac{1^2}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=9\)

19 tháng 12 2015

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

=>\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=\frac{9}{1}=9\)

Dấu = xảy ra <=>x=y=z=1/3

2 tháng 11 2016

Nếu  là số có 1 chữ số thì biểu thức  có giá trị lớn nhất là