K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2017

Ta có:

\(ab+bc+ca=\frac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}=\frac{0-2010}{2}=-1005\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=\left(ab+bc+ca\right)^2-2abc\left(a+b+c\right)\)

\(=\left(-1005\right)^2-2abc.0=1005^2\)

\(\Rightarrow A=a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(=2010^2-1005^2=2.1005^2=2020050\)

15 tháng 2 2020

+) Ta có : \(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow2\left(ab+bc+ca\right)=-2016\)

\(\Rightarrow\left(ab+bc+ca\right)^2=\left(-2013\right)^2\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=2013^2\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=2013^2\)( Do \(a+b+c=0\) )

+) Lại có : \(a^2+b^2+c^2=2016\)

\(\Rightarrow\left(a^2+b^2+c^2\right)^2=2016^2\)

\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=2016^2\)

\(\Rightarrow a^4+b^4+c^4=2016^2-2.2013^2=-4040082\)

Hay : \(A=-4040082\)

Vậy \(A=-4040082\) với a,b,c thỏa mãn đề.

3 tháng 12 2017

Ta có: \(x^2-y+\frac{1}{4}=y^2-x+\frac{1}{4}=0\)

\(\Rightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Rightarrow}x=y=\frac{1}{2}\)

Vậy \(x=y=\frac{1}{2}\)