Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo lời giải tại đây:
Cho 3 phân thức: \(\dfrac{x^2 y^2-z^2}{2xy};\dfrac{y^2 z^2-x^2}{2yz};\dfrac{x^2 z^2-y^2}{2xz}\) có tổng bằng 1(x,y, z kh... - Hoc24
c) hang dang thuc ( x -y+z)^2
o duoi phan h hang dang thuc luon
a) phan h nhan tu ra sao cho co tử la (x-1)(3x^2 -4x +1)
mau la (x-1)(2x^2 -x-3)
b ) k nhin dc de
Ta có: \(\frac{x^2}{1+2yz}+\frac{y^2}{1+2zx}+\frac{z^2}{1+2xy}\)
\(\ge\frac{\left(x+y+z\right)^2}{3+2\left(xy+yz+zx\right)}\ge\frac{\left(x+y+z\right)^2}{3+2\left(x^2+y^2+z^2\right)}\)
\(=\frac{\left(x+y+z\right)^2}{3+2}=\frac{\left(x+y+z\right)^2}{5}\)
Mà \(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=3\)
Nên thay vào ngược dấu
=> ch bt lm
Nói chung khá đơn giản. Em chứng minh bất đẳng thức sau đây là được.
\(\frac{x^2}{1+2yz}=\frac{x^2}{x^2+\left(y^2+z^2+2yz\right)}=\frac{x^2}{x^2+\left(y+z\right)^2}\ge\frac{1}{25}\cdot\frac{17x^2-y^2-z^2}{x^2+y^2+z^2}\)
Có thể chứng minnh nó bằng cách: \(f\left(x,y,z\right)=\frac{x^2}{x^2+\left(y+z\right)^2}-\frac{1}{25}\cdot\frac{17x^2-y^2-z^2}{x^2+y^2+z^2}\)
Ta chứng minhL \(f\left(x,y,z\right)\ge f\left(x,\frac{y+z}{2},\frac{y+z}{2}\right)\ge0\) (quy đồng phát là ra nhân tử (y-z)^2 nên hiển nhiên:v)
Tương tự cộng lại. Xong.
Cách Cauchy-SChwarz:
Chứng minh theo trình tự: \(\Sigma\frac{x^2}{x^2+\left(y+z\right)^2}\ge\frac{\left(x^2+y^2+z^2\right)^2}{\Sigma x^2\left[x^2+\left(y+z\right)^2\right]}\ge\frac{3}{5}\)
pppppppppppppppppppppppppppppppppppppppppppppp'ppppppppppppppppppppppppppppp
ppppppppppppp
Tao co:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow yz+xz+xy=0\)
\(Suyra:yz=-xz-xy;xz=-yz-xy;xy=-yz-xz\)
\(\Rightarrow x^2+2yz=x^2+yz-xz-xy=x\left(x-y\right)-z\left(x-y\right)=\left(x-y\right)\left(x-z\right)\)
\(\Rightarrow y^2+2xz=y^2+xz-yz-xy=z\left(x-y\right)-y\left(x-y\right)=\left(x-y\right)\left(z-y\right)\)
\(\Rightarrow z^2+2xy=z^2+xy-yz-xz=z\left(z-y\right)-x\left(z-y\right)=\left(z-y\right)\left(z-x\right)\)
\(Thay:\frac{1}{\left(x-y\right)\left(x-z\right)}+\frac{1}{\left(x-y\right)\left(z-y\right)}+\frac{1}{\left(z-y\right)\left(z-x\right)}\)
\(=\frac{z-y+x-z-x+y}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=0\left(dpcm\right)\)
^^
Biến thì khác nhau nhưng quan trọng là cách làm :))
Vào TKHĐ của tớ để xem hình ảnh nhé, dài ngại chả muốn viết :V