K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2018

a)\(F\left(x\right)=2\left(x^4+x^3\right)+2x-4\left(x^2-x^3-1\right)+4\)

\(=2x^4+2x^3+2x-4x^2+4x^3+4+4\)

\(=2x^4+6x^3+2x-4x^2+2x+8\)

\(G\left(x\right)=5x^4-4\left(3+x^4\right)-2x^2+4x^3+2\left(x^3-x^2+x\right)\)

\(=5x^4-12-4x^4-2x^2+4x^3+2x^3-2x^2+2x\)

\(=x^4+6x^3-4x^2+2x-12\)

30 tháng 5 2018

b) Tìm \(K\left(x\right)=F\left(x\right)+G\left(x\right)\)

\(\dfrac{+\dfrac{F\left(x\right)=2x^4+6x^3-4x^2+2x+8}{G\left(x\right)=x^4+6x^3-4x^2+2x-12}}{K\left(x\right)=3x^4+12x^3-8x^2+4x-4}\)

Tìm \(H\left(x\right)=F\left(x\right)-G\left(x\right)\)

\(\dfrac{-\dfrac{F\left(x\right)=2x^4+6x^3-4x^2+2x+8}{G\left(x\right)=x^4+6x^3-4x^2+2x-12}}{H\left(x\right)=x^4+0-0+0+20}\)

15 tháng 6 2019

a) F(x) = 3x2 -2x-x4-2x2-4x4+6

= (-x4 -4x4) + ( 3x2 -2x2) -2x+6

= -5x4 + x2 -2x +6

G(x) = -5x4 + ( -x3 +2x3) +( 2x2 +x2) -3

= -5x4+ x3+ 3x2-3

15 tháng 6 2019

huhuhuhuhugianroikhocroilàm gần xong r còn câu c đang làm viêt dấu suy ra mà ai dé bấm lộn vô chỗ vẽ hình ...nên nhấn hủy bỏ...âu bt v... là xóa hêtucchekhocroiviết trên máy lâu ắm lun

18 tháng 5 2018

a,f(x)=5x3 - 3x +7-x2-x=5x3-x2-4x+7

g(x)=-5x3+4x-3+2x+x2-2=-5x3+x2+6x-5

b, f(x)=5x3-x2-4x+7

g(x)=-5x3+x2+6x-5

h(x)=f(x)+g(x)=0 +0+2x+2

c,Xét h(x)=2x+2=0

=>2x=-2

=>x=-1

Vậy x=-1 là nghiệm của h(x)

vui

5 tháng 4 2022

là sao hả bạn êy

10 tháng 4 2017

a) \(f\left(x\right)=x^2-2x-5x^4+6\)

\(=-5x^4+x^2-2x+6\)

\(g\left(x\right)=x^3-5x^4+3x^2-3\)

\(=-5x^4+x^3+3x^2-3\)

b) \(f\left(x\right)+g\left(x\right)=-5x^4+x^2-2x+6-5x^4+x^3+3x^2-3\)

\(=-10x^4+4x^2+x^3-2x+3\)

\(f\left(x\right)-g\left(x\right)=-5x^4+x^2-2x+6+5x^4-x^3-3x^2+3\)

\(=-2x^2-x^3-2x+9\)

c) Thay x = 1 vào f(x) ta có:

\(f\left(1\right)=1-2-5+6=0\)

Vậy x = 1 là nghiệm của f(x)

d) \(h\left(x\right)+f\left(x\right)-g\left(x\right)=-2x^2-x+9\)

\(\Rightarrow h\left(x\right)=-2x^2-x+9+g\left(x\right)-f\left(x\right)\)

\(\Rightarrow h\left(x\right)=-2x^2-x+9+2x^2+x^3+2x-9\)

\(\Rightarrow h\left(x\right)=x^3+x\)

e) Ta có: \(x^3+x=0\)

\(\Rightarrow x^2\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Vậy x = 0, x = -1 là nghiệm của H(x)

10 tháng 4 2017

Thanks nhìu nha