Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(n>2\)
=> \(2^n>2^2=4\) ma 4 > 3
=>\(2^n>3\)
=>\(2^n=\begin{cases}3k+1\\3k+2\end{cases}\)
Neu \(2^n=3k+2\)
=>\(2^n+1=3k+2+1=3k+3⋮3\) ( trai nguoc voi de bai )
=>\(2^n=3k+1\)
=> \(2^n-1=3k+1-1=3k⋮3\)
Vay \(2^n-1\) la hop so
Bài làm
Gọi 2n-1,2n,2n+1 là 3 số nguyên liên tiếp (n>2)
Ta có
2n+1 là số nguyên tố lớn hơn 3
=>2n-1 chia hết cho 3
2n không chia hết cho 3
Vì 2n-1,2n,2n+1 là 3 số nguyên liên tiếp
=> 1 trong 3 số phải chia hết cho 3
=> 2n-1 chia hết cho3 (1)
Vì n>2
=> 2n-1 > 3 (2)
Từ (1) và (2)
=> 2n-1 là hợp số
=> DPCM
P/s tham khảo nha
Gọi 2n -1,2n ,2n+1 là 3 số nguyên liên tiếp (n>2)
Ta có 2n-1 là số nguyên tố lớn hơn 3
=>2n-1 không chia hết cho 3
2n không chia hết cho 3 (2n -1,2n ,2n+1 là 3 số nguyên liên tiếp)
=> 2n+1 chia hết cho3 (1)
Vì n>2 => 2 n+1 > 3 (2)
Từ (1) và (2) => 2 n+1 là hợp số(đpcm)
Theo bài ra, ta có: \(n>2\Rightarrow2^n+1>2^2+1=5\)
\(n>2\Rightarrow2^n-1>2^2-1=4\)
Ta có: \(\left(2^n+1\right)+\left(2^n-1\right)=2.2^n=2^{n+1}⋮2\)
Mà \(\left(2^n+1;2\right)=1\Rightarrow2^{n-1}⋮2\)
Lại có \(2^n-1>4\)
\(\Rightarrow2^n-1\)là hợp số
=> đpcm
2n>22=4>3 (vì n>2)
=>2n=3k+1;3k+2
xét 2n=3k+2 =>2n+1=3k+3=3(k+1) chia hết cho 3
=>2n+1 là hợp số (trái giả thuyết)
=>2n=3k+1
=>2n-1=3k+1-1=3k chia hết cho 3
=>2n-1 là hợp số
=>đpcm
ta có
2^n là 3k+1 ,3k+2
xét trường hợp