K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
LD
6
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TH
0
NP
0
NT
0
HL
0
HL
1
28 tháng 11 2015
Thế b2 = ac trong 2 biểu thức trước, ta có :
a2 + b2 = 20152
=> a2 + ac = 20152
=> a(a + c) = 20152 (1)
b2 + c2 = 20162
=> ac + c2 = 20162
=> c(a + c) = 20162 (2)
Từ (1), (2) => \(\frac{c\left(a+c\right)}{a\left(a+c\right)}=\frac{2016^2}{2015^2}\)
=> \(\frac{c}{a}=\frac{2016^2}{2015^2}\)
Ta lại có :
20152 = 52 . 132 . 312
20162 = 210 . 34 . 72
=> ƯCLN (20152 ; 20162) = 1
=> Ko rút gọn đc \(\frac{2016^2}{2015^2}\)
=> c = 20162
a = 20152
=> b = 0 (phần này bạn tự giải)
Mà b2 = ac
=> vô lí
=> ko tìm đc nghiệm a,b,c
Lời giải:
Do $a, b, c$ không có vai trò như nhau nên không thể giả sử \(a>b> c\) hoặc bất cứ TH nào khác mà chỉ có thể xét các TH.
Từ \(2a^a+b^b=3c^c\Leftrightarrow \frac{2a^a}{c^c}+\frac{b^b}{c^c}=3\) (*)
+) Nếu \(a=b=c\) thì hiển nhiên (*) đúng
\(2015^{a-b}+2016^{b-c}+2017^{c-a}=2015^0+2016^0+2017^0=3\)
+) Nếu tồn tại hai số bằng nhau thì hiển nhiên số còn lại cũng bằng 2 số đó. Giống như TH trên ta thu được giá trị biểu thức bằng 3
+) Nếu $a,b,c$ đôi một khác nhau
\(c=\min (a,b,c)\Rightarrow \frac{2a^a}{c^c}+\frac{b^b}{c^c}>2+1=3\) (trái với (*))
\(c=\max (a,b,c)\Rightarrow \frac{2a^a}{c^c}+\frac{b^b}{c^c}< 2+1=3\) (trái với (*))
Do đó $c$ nằm giữa $a$ và $b$
Giả sử \(a> c> b\)
\(\Rightarrow a\geq c+1\)
\(\Rightarrow 3=\frac{2a^a}{c^c}+\frac{b^b}{c^c}>\frac{2(c+1)^{c+1}}{c^c}\)
Ta có: \(2(c+1)^{c+1}>2(c+1).c^c\geq 2(1+1)c^c> 4c^c\)
\(\Rightarrow 3> \frac{2(c+1)^{c+1}}{c^c}> 4\) (mâu thuẫn)
Giả sử \(b> c> a\Rightarrow b\geq c+1\Rightarrow 3=\frac{2a^a}{c^c}+\frac{b^b}{c^c}> \frac{(c+1)^{c+1}}{c^c}\)
\(c=1\Rightarrow 3> \frac{(1+1)^{1+1}}{1^1}=4\) (vô lý)
\(c\geq 2\Rightarrow (c+1)^{c+1}=(c+1)(c+1)^c\geq 3(c+1)^c> 3c^c\)
\(\Rightarrow 3> \frac{(c+1)^{c+1}}{c^c}> 3\) (mâu thuẫn)
-------------------
Vậy \(a=b=c\) và giá trị biểu thức bằng 3
Thánh lm cx chưa nổi !!
Ribi Nkok Ngok
Nguyễn Thanh Hằng
Akai Haruma
Nguyễn Huy Tú
Nguyễn Nam
lê thị hương giang
Võ Đông Anh Tuấn