Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: xx' // yy'
yy' \(\perp\)AB
Từ 2 điều trên suy ra: xx' \(\perp\)AB
=> đpcm
Vậy...
b) Ta có: xx' // yy' và DC là cát tuyến (*)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{DCB}+\widehat{ADC}=180^o\left(trongcungphia\right)\\\widehat{DCB}=\widehat{CDx'}\left(soletrong\right)\end{matrix}\right.\)
Mà \(\widehat{DCB}=120^o\left(gt\right)\Rightarrow\left\{{}\begin{matrix}\widehat{ADC}=60^o\\\widehat{CDx'}=120^o\end{matrix}\right.\)
Từ (*) suy ra: \(\widehat{ADC}=\widehat{DCy'}=60^o\)
Vậy...
Xét tam giác ΔAHO và ΔBHO, ta có :
+ \(\widehat{O}\) là góc chung(giả thuyết)
+AH=AB(vì Ot là tia phân giác của góc xOy)
+\(\widehat{AHO}\)=\(\widehat{BHO}\)(giả thuyết)
➩ΔAHO = ΔBHO (c.g.c)(nghĩa là góc.cạnh.góc)
⚠⚠⚠Lưu ý: trường hợp này là góc.cạnh.góc (hoặc là c.g.c) nên theo yêu cầu cần 2 góc và 1 cạnh ; phải đặt đúng theo thứ tự :
Góc đầu tiên;rồi đến cạnh và cuối là góc còn lại
a, xét t.giác ABM và t.giác ACM có:
AB=AC(gt)
AM cạnh chung
=> t.giác ABM=t.giác ACM(CH-CGV)
a: Xét ΔOAM và ΔOBM có
OA=OB
\(\widehat{AOM}=\widehat{BOM}\)
OM chung
Do đó: ΔOAM=ΔOBM
b: Xét ΔOAC và ΔOBD có
\(\widehat{AOC}\) chung
OA=OB
\(\widehat{OAC}=\widehat{OBD}\)
Do đó; ΔOAC=ΔOBD
Suy ra: AC=BD