K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2016

Ta có hình vẽ:

O A B C D M N

a/ Xét tam giác OAC và tam giác OBD có:

OA = OB (GT)

góc AOC = góc BOD (đối đỉnh)

OC = OD (GT)

=> tam giác OAC = tam giác OBD (c.g.c)

=> AC = BD (2 cạnh tương ứng)

Ta có: tam giác OAC = tam giác OBD (đã chứng minh trên)

=> góc CAO = góc OBD (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AC // BD (đpcm)

b/ Xét tam giác OAD và tam giác OBC có:

OA = OB (GT)

góc AOD = góc BOC (đối đỉnh)

OC = OD (GT)

=> tam giác OAD = tam giác OBC (c.g.c)

=> AD = BC (2 cạnh tương ứng)

Ta có: tam giác OAD = tam giác OBC (đã chứng minh trên)

=> góc DAO = góc CBO (2 góc tương ứng)

Mà 2 góc này đang ở vị trí so le trong

=> AD // BC 9đpcm)

c/ Ta có: COM = DON (đối đỉnh)

Ta có: góc AOD + góc AOM + góc COM = 1800

=> góc AOD + góc AOM + góc DON = 1800

hay góc MON = 1800

hay M,O,N thẳng hàng

17 tháng 12 2016

A B C D O M N a) Xét ΔCAO và ΔDBO có:

OA=OB (gt)

\(\widehat{COA}=\widehat{DOB}\) (đối đỉnh)

OC=OD (gt)

=> ΔCAO=ΔDBO (c.g.c)

=> AC=BD (hai cạnh tương ứng)

ΔCAO=ΔDBO

=> \(\widehat{OAC}=\widehat{OBD}\) mà hai góc ở vị trí so le trong nên

=> AC//BD. (đpcm)

b) Xét ΔAOD và ΔBOC có:

OA=OB (gt)

\(\widehat{AOD}=\widehat{BOC}\) (đối đỉnh)

OD=OC (gt)

=> ΔAOD=ΔBOC (c.g.c)

=> AD=BC (hai cạnh tương ứng)

ΔAOD=ΔBOC

=> \(\widehat{OAD}=\widehat{OBC}\) mà hai góc ở vị trí so le trong nên

=> AD//BC (đpcm)

c) Ta có: \(\widehat{AOM}=\widehat{NOB}\) (đối đỉnh)

Mà ta có: \(\widehat{AOM}+\widehat{MOC}+\widehat{COB}=180^o\)

=> \(\widehat{MOC}+\widehat{COB}+\widehat{BON}=\widehat{MON}=180^o\)

Vậy ba điểm M,O,N thẳng hàng

 

30 tháng 1 2020

Ôn tập Tam giác

30 tháng 1 2020

a) Vì 2 đoạn thẳng \(AB\)\(CD\) cắt nhau tại trung điểm O của mỗi đoạn (gt).

=> \(O\) là trung điểm của \(AB\)\(CD.\)

=> \(\left\{{}\begin{matrix}OA=OB\\OC=OD\end{matrix}\right.\) (tính chất trung điểm).

Xét 2 \(\Delta\) \(OAC\)\(OBD\) có:

\(OA=OB\left(cmt\right)\)

\(\widehat{AOC}=\widehat{BOD}\) (vì 2 góc đối đỉnh)

\(OC=OD\left(cmt\right)\)

=> \(\Delta OAC=\Delta OBD\left(c-g-c\right)\)

=> \(AC=BD\) (2 cạnh tương ứng).

=> \(\widehat{OAC}=\widehat{OBD}\) (2 góc tương ứng).

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AC\) // \(BD.\)

b) Xét 2 \(\Delta\) \(OAD\)\(OBC\) có:

\(OA=OB\left(cmt\right)\)

\(\widehat{AOD}=\widehat{BOC}\) (vì 2 góc đối đỉnh)

\(OD=OC\left(cmt\right)\)

=> \(\Delta OAD=\Delta OBC\left(c-g-c\right)\)

=> \(AD=BC\) (2 cạnh tương ứng).

=> \(\widehat{OAD}=\widehat{OBC}\) (2 góc tương ứng).

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AD\) // \(BC.\)

c) Ta có: \(\widehat{COM}=\widehat{DON}\) (vì 2 góc đối đỉnh).

\(\widehat{AOD}+\widehat{AOM}+\widehat{COM}=180^0\left(gt\right)\)

=> \(\widehat{AOD}+\widehat{AOM}+\widehat{DON}=180^0\)

=> \(\widehat{MON}=180^0.\)

=> 3 điểm \(M,O,N\) thẳng hàng (đpcm).

Chúc bạn học tốt!

4 tháng 1 2016

A D C O N M B

Xét \(\Delta\)AOD & \(\Delta\)COB có:

OA=OC(vì O là trung điểm AC)

góc AOD= góc COB(2 góc đối đỉnh)

OD=OB(vì O là trung điểm BD)

=>\(\Delta\)AOD=\(\Delta\)COB(c.g.c)

=>AD=CB(2 cạnh tương ứng)(1)

Vì N là trung điểm của AD

=>AN=ND=AD/2(2)

Vì M là trung điểm BC

=>MB=MC=BC/2(3)

Từ (1);(2);(3)=>AN=MC

Xét \(\Delta\)NOA & \(\Delta\)MOC có:

AN=MC(theo c/m trên)

ON=OM(vì O là trung điểm MN)

OA=ỌC(vì O là trung điểm AC)

=>\(\Delta\)NOA=\(\Delta\)MOC(c.c.c)

=>góc NOA= góc MOV(2 góc tương ứng)

Ta có: góc =180 độ

=>góc NOA+ góc NOC= 180 độ(2 góc kề bù)

=>góc MOC+góc NỚC=180 độ

=>góc NOM=180 độ

=>N,O,M thẳng hàng

 

 

15 tháng 2 2018

Xét tam giác ACN có : AD=DN và AO=OC (GT)

=> OD là đường trung bình => OD//CN

Xét tam giác ACM có : AO=OC và AB=BM (GT)

=> OB là đường trung bình => OB//CM

Mà O,B,D thẳng hàng theo gt 

=> M,C,N thẳng hàng ( vì CN//BD và CM//BD ) ( tiên đề ơ cơ lít :D ) 

15 tháng 2 2018

Xét tam giác ACN có : AD=